User Documentation for IDA v5H.8.0
(SUNDIALS v5.8.0)

Alan C. Hindmarsh!, Radu Serban', Cody J. Balos!,
David J. Gardner?, Daniel R. Reynolds?, and Carol S. Woodward*

LCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory
2Department of Mathematics, Southern Methodist University

September 30, 2021

aials

<
S

Vo)

UCRL-SM-208112

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States government or Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Approved for public release; further dissemination unlimited

CONTRIBUTORS

The SUNDIALS library has been developed over many years by a number of contributors. The cur-
rent SUNDIALS team consists of Cody J. Balos, David J. Gardner, Alan C. Hindmarsh, Daniel R.
Reynolds, and Carol S. Woodward. We thank Radu Serban for significant and critical past contribu-
tions.

Other contributors to SUNDIALS include: James Almgren-Bell, Lawrence E. Banks, Peter N. Brown,
George Byrne, Rujeko Chinomona, Scott D. Cohen, Aaron Collier, Keith E. Grant, Steven L. Lee,
Shelby L. Lockhart, John Loffeld, Daniel McGreer, Slaven Peles, Cosmin Petra, H. Hunter Schwartz,
Jean M. Sexton, Dan Shumaker, Steve G. Smith, Allan G. Taylor, Hilari C. Tiedeman, Chris White,
Ting Yan, and Ulrike M. Yang.

Contents

List of Tables

List of Figures

1

Introduction

1.1
1.2
1.3

Changes from previous versions
Reading this User Guide
SUNDIALS Release License

Mathematical Considerations

2.1
2.2
2.3

IVP solution
Preconditioning L.
Rootfinding,

Code Organization

3.1
3.2

SUNDIALS organization
IDA organization

Using IDA for C Applications

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Access to library and header files
Data types,
Header files
A skeleton of the user’s main program
User-callable functions
User-supplied functions

A parallel band-block-diagonal preconditioner module

Using IDA for Fortran Applications

5.1

IDA Fortran 2003 Interface Module

5.2 FIDA, an Interface Module for FORTRAN Applications

5.3
5.4
5.5

Important note on portability
Fortran Data Types
FIDA optional input and output

IDA Features for GPU Accelerated Computing

6.1
6.2

SUNDIALS GPU Programming Model
Steps for Using GPU Accelerated SUNDIALS

Description of the NVECTOR module

7.1
7.2
7.3
7.4

The NVECTOR API
NVECTOR functions used by IDA
The NVECTOR_SERIAL implementation . .
The NVECTOR_PARALLEL implementation

25
25
26

29
29
30
31
32
35
74
81

87
87
93
93
93
103

111
111
112

7.5 The NVECTOR_OPENMP implementation
7.6 The NVECTOR_PTHREADS implementation
7.7 The NVECTOR_PARHYP implementation
7.8 The NVECTOR_PETSC implementation
7.9 The NVECTOR_CUDA implementation
7.10 The NVECTOR_HIP implementation
7.11 The NVECTOR_RAJA implementation
7.12 The NVECTOR_SYCL implementation
7.13 The NVECTOR_OPENMPDEYV implementation
7.14 The NVECTOR_TRILINOS implementation
7.15 The NVECTOR_MANYVECTOR implementation
7.16 The NVECTOR_MPIMANYVECTOR implementation
7.17 The NVECTOR_-MPIPLUSX implementation
7.18 NVECTOR Examples o et

8 Description of the SUNMatrix module
8.1 The SUNMatrix API
8.2 SUNMatrix functions used by IDAo o
8.3 The SUNMatrix_Dense implementation
8.4 The SUNMatrix_Band implementation
8.5 The SUNMatrix_Sparse implementation
8.6 The SUNMatrix SLUNRIoc implementation
8.7 The SUNMatrix_cuSparse implementation
8.8 The SUNMATRIX_MAGMADENSE implementation
8.9 The SUNMATRIX_ONEMKLDENSE implementation

9 Description of the SUNLinearSolver module
9.1 The SUNLinearSolver APT
9.2 Compatibility of SUNLinearSolver modules
9.3 Implementing a custom SUNLinearSolver module
9.4 IDA SUNLinearSolver interface
9.5 The SUNLinearSolver_Dense implementation
9.6 The SUNLinearSolver_Band implementation
9.7 The SUNLinearSolver_LapackDense implementation
9.8 The SUNLinearSolver_LapackBand implementation
9.9 The SUNLinearSolver KLU implementation
9.10 The SUNLinearSolver_SuperLUDIST implementation
9.11 The SUNLinearSolver_SuperLUMT implementation
9.12 The SUNLinearSolver_cuSolverSp_batchQR implementation
9.13 The SUNLinearSolver_MagmaDense implementation
9.14 The SUNLinearSolver_OneMklDense Implementation
9.15 The SUNLinearSolver SPGMR implementation
9.16 The SUNLinearSolver SPFGMR implementation
9.17 The SUNLinearSolver_SPBCGS implementation.
9.18 The SUNLinearSolver SPTFQMR implementation
9.19 The SUNLinearSolver PCG implementation
9.20 SUNLinearSolver Examples

10 Description of the SUNNonlinearSolver module
10.1 The SUNNonlinearSolver APT
10.2 IDA SUNNonlinearSolver interface
10.3 The SUNNonlinearSolver Newton implementation
10.4 The SUNNonlinearSolver_PetscSNES implementation

vi

209
209
215
216
219
225
232
235
240
243

249
250
259
260
262
264
267
269
272
274
281
285
289
291
293
294
301
309
315
321
328

11 Description of the SUNMemory module
11.1 The SUNMemoryHelper APT

11.2 The SUNMemoryHelper_Cuda implementation
11.3 The SUNMemoryHelper_Hip implementation
11.4 The SUNMemoryHelper_Sycl implementation

A SUNDIALS Package Installation Procedure

A.1 CMake-based installationo

A.2 Building and Running Examples

A.3 Configuring, building, and installing on Windows

A.4 Installed libraries and exported header files

B IDA Constants

B.1 IDA input constants
B.2 IDA output constants

C SUNDIALS Release History
Bibliography

Index

vii

353
353
357
358
359

363
364
376
376
377

385
385
385

387

389

393

List of Tables

4.1 SUNDIALS linear solver interfaces and vector implementations that can be used for each. 35
4.2 Optional inputs for IDA and IDALS 45
4.3 Optional outputs from IDA and IDALS i it e 60
5.1 Summary of Fortran 2003 interfaces for shared SUNDIALS modules. 88
5.2 C/Fortran 2003 Equivalent Types. oo it 89
5.3 Keys for setting FIDA optional inputs 104
5.4 Description of the FIDA optional output arrays I0UT and ROUT 105
6.1 List of sSUNDIALS GPU Enabled Modules. 112
7.1 Vector Identifications associated with vector kernels supplied with SUNDIALS. 130
7.2 List of vector functions usage by IDA code modules 135
8.1 Description of the SUNMatrix return codes 212
8.2 Identifiers associated with matrix kernels supplied with SUNDIALS. 213
8.3 SUNDIALS matrix interfaces and vector implementations that can be used for each. . . 213
8.4 List of matrix functions usage by IDA code modules, 215
9.1 Description of the SUNLinearSolver error codes 257
9.2 SUNDIALS matrix-based linear solvers and matrix implementations that can be used for

each. 259
9.3 List of linear solver function usage in the IDALS interface 263
10.1 Description of the SUNNonlinearSolver return codes 338
A.1 SuNDIALS libraries and header files oo 379
C.1 Release History e e e 387

ix

List of Figures

3.1
3.2
3.3

8.1
8.2

Al
A2

High-level diagram of the SUNDIALS suite. 25
Directory structure of the SUNDIALS source tree. 26
Overall structure diagram of the IDA package 27
Diagram of the storage for a SUNMATRIX_BAND object 221
Diagram of the storage for a compressed-sparse-column matrix 228
Initial ccmake configuration screen Lo Lo 365
Changing the instdir e 366

xi

Chapter 1

Introduction

IDA is part of a software family called sUNDIALS: SUite of Nonlinear and DIfferential/ALgebraic
equation Solvers [32]. This suite consists of CVODE, ARKODE, KINSOL, and IDA, and variants of these
with sensitivity analysis capabilities, CVODES and IDAS.

IDA is a general purpose solver for the initial value problem (IVP) for systems of differential-
algebraic equations (DAEs). The name IDA stands for Implicit Differential-Algebraic solver. IDA is
based on DASPK [14, 15], but is written in ANSI-standard C rather than FORTRANT7. Its most notable
features are that, (1) in the solution of the underlying nonlinear system at each time step, it offers
a choice of Newton/direct methods and a choice of Inexact Newton/Krylov (iterative) methods; and
(2) it is written in a data-independent manner in that it acts on generic vectors and matrices without
any assumptions on the underlying organization of the data. Thus IDA shares significant modules
previously written within CASC at LLNL to support the ordinary differential equation (ODE) solvers
CVODE [33, 20] and PVODE [18, 19], and also the nonlinear system solver KINSOL [21].

At present, IDA may utilize a variety of Krylov methods provided in SUNDIALS that can be used in
conjuction with Newton iteration: these include the GMRES (Generalized Minimal RESidual) [44],
FGMRES (Flexible Generalized Minimum RESidual) [43], Bi-CGStab (Bi-Conjugate Gradient Stabi-
lized) [46], TFQMR (Transpose-Free Quasi-Minimal Residual) [27], and PCG (Preconditioned Con-
jugate Gradient) [29] linear iterative methods. As Krylov methods, these require little matrix storage
for solving the Newton equations as compared to direct methods. However, the algorithms allow
for a user-supplied preconditioner matrix, and, for most problems, preconditioning is essential for an
efficient solution.

For very large DAE systems, the Krylov methods are preferable over direct linear solver methods,
and are often the only feasible choice. Among the Krylov methods in SUNDIALS, we recommend
GMRES as the best overall choice. However, users are encouraged to compare all options, especially
if encountering convergence failures with GMRES. Bi-CGFStab and TFQMR have an advantage
in storage requirements, in that the number of workspace vectors they require is fixed, while that
number for GMRES depends on the desired Krylov subspace size. FGMRES has an advantage in
that it is designed to support preconditioners that vary between iterations (e.g. iterative methods).
PCG exhibits rapid convergence and minimal workspace vectors, but only works for symmetric linear
systems.

There are several motivations for choosing the C language for IDA. First, a general movement away
from FORTRAN and toward C in scientific computing was apparent. Second, the pointer, structure,
and dynamic memory allocation features in C are extremely useful in software of this complexity,
with the great variety of method options offered. Finally, we prefer C over C++ for IDA because of
the wider availability of C compilers, the potentially greater efficiency of C, and the greater ease of
interfacing the solver to applications written in extended FORTRAN.

2 Introduction

1.1 Changes from previous versions

Changes in v5.8.0

The RAJA NVECTOR implementation has been updated to support the SYCL backend in addition to
the CUDA and HIP backend. Users can choose the backend when configuring SUNDIALS by using
the SUNDIALS _RAJA BACKENDS CMake variable. This module remains experimental and is subject to
change from version to version.

A new SUNMATRIX and SUNLINSOL implementation were added to interface with the Intel oneAPI
Math Kernel Library (oneMKL). Both the matrix and the linear solver support general dense linear
systems as well as block diagonal linear systems. See Chapter 9.14 for more details. This module is
experimental and is subject to change from version to version.

Added a new optional function to the SUNLinearSolver API, SUNLinSolSetZeroGuess, to indicate
that the next call to SUN1linSolSolve will be made with a zero initial guess. SUNLinearSolver
implementations that do not use the SUNLinSolNewEmpty constructor will, at a minimum, need set
the setzeroguess function pointer in the linear solver ops structure to NULL. The SUNDIALS iterative
linear solver implementations have been updated to leverage this new set function to remove one dot
product per solve.

IDA now supports a new “matrix-embedded” SUNLINSOL type. This type supports user-supplied
SUNLINSOL implementations that set up and solve the specified linear system at each linear solve call.
Any matrix-related data structures are held internally to the linear solver itself, and are not provided
by the SUNDIALS package.

Added the function IDASetN1lsResFn to supply an alternative residual side function for use within
nonlinear system function evaluations.

The installed SUNDIALSConfig.cmake file now supports the COMPONENTS option to find package.
The exported targets no longer have IMPORTED_GLOBAL set.

A bug was fixed in SUNMatCopyOps where the matrix-vector product setup function pointer was
not copied.

A bug was fixed in the SPBCGS and SPTFQMR solvers for the case where a non-zero initial guess
and a solution scaling vector are provided. This fix only impacts codes using SPBCGS or SPTFQMR
as standalone solvers as all SUNDIALS packages utilize a zero initial guess.

Changes in v5.7.0

A new NVECTOR implementation based on the SYCL abstraction layer has been added targeting Intel
GPUs. At present the only sYCL compiler supported is the DPC++ (Intel oneAPI) compiler. See
Section 7.12 for more details. This module is considered experimental and is subject to major changes
even in minor releases.

A new SUNMATRIX and SUNLINSOL implementation were added to interface with the MAGMA
linear algebra library. Both the matrix and the linear solver support general dense linear systems as
well as block diagonal linear systems, and both are targeted at GPUs (AMD or NVIDIA). See Section
9.13 for more details.

Changes in v5.6.1

Fixed a bug in the sSUNDIALS CMake which caused an error if the CMAKE_CXX_STANDARD and
SUNDIALS_RAJA_BACKENDS options were not provided.
Fixed some compiler warnings when using the IBM XL compilers.

Changes in v5.6.0

A new NVECTOR implementation based on the AMD ROCm HIP platform has been added. This
vector can target NVIDIA or AMD GPUs. See 7.10 for more details. This module is considered
experimental and is subject to change from version to version.

1.1 Changes from previous versions 3

The RAJA NVECTOR implementation has been updated to support the HIP backend in addi-
tion to the CUDA backend. Users can choose the backend when configuring SUNDIALS by using
the SUNDIALS_RAJA BACKENDS CMake variable. This module remains experimental and is subject to
change from version to version.

A new optional operation, N_VGetDeviceArrayPointer, was added to the N_Vector API. This
operation is useful for N_Vectors that utilize dual memory spaces, e.g. the native SUNDIALS CUDA
N_Vector.

The SUNMATRIX_CUSPARSE and SUNLINEARSOLVER_CUSOLVERSP_BATCHQR imple-
mentations no longer require the SUNDIALS CUDA N_Vector. Instead, they require that the vec-
tor utilized provides the N_VGetDeviceArrayPointer operation, and that the pointer returned by
N_VGetDeviceArrayPointer is a valid CUDA device pointer.

Changes in v5.5.0

Refactored the SUNDIALS build system. CMake 3.12.0 or newer is now required. Users will likely see
deprecation warnings, but otherwise the changes should be fully backwards compatible for almost all
users. SUNDIALS now exports CMake targets and installs a SUNDIALSConfig.cmake file.

Added support for SuperLU DIST 6.3.0 or newer.

Changes in v5.4.0

Added the function IDASetLSNormFactor to specify the factor for converting between integrator
tolerances (WRMS norm) and linear solver tolerances (L2 norm) i.e., tol L2 = nrmfac * tol _WRMS.
The expected behavior of SUNNonlinSolGetNumIters and SUNNonlinSolGetNumConvFails in the
SUNNONLINSOL API have been updated to specify that they should return the number of nonlinear
solver iterations and convergence failures in the most recent solve respectively rather than the cumula-
tive number of iterations and failures across all solves respectively. The API documentation and SUN-
DIALS provided SUNNONLINSOL implementations have been updated accordingly. As before, the cumu-
lative number of nonlinear iterations may be retreived by calling IDAGetNumNonlinSolvIters, the cu-
mulative number of failures with IDAGetNumNonlinSolvConvFails, or both with IDAGetNonlinSolvStats.

A new API, SUNMemoryHelper, was added to support GPU users who have complex memory
management needs such as using memory pools. This is paired with new constructors for the NVEC-
TOR_CUDA and NVECTOR_RAJA modules that accept a SUNMemoryHelper object. Refer to sections
6.1,11.1, 7.9 and 7.11 for more information.

The NVECTOR_RAJA module has been updated to mirror the NVECTOR_CUDA module. Notably, the
update adds managed memory support to the NVECTOR_RAJA module. Users of the module will need
to update any calls to the N_VMake Raja function because that signature was changed. This module
remains experimental and is subject to change from version to version.

The NVECTOR_TRILINOS module has been updated to work with Trilinos 12.18+. This update
changes the local ordinal type to always be an int.

Added support for CUDA v11.

Changes in v5.3.0

Fixed a bug in the iterative linear solver modules where an error is not returned if the Atimes function
is NULL or, if preconditioning is enabled, the PSolve function is NULL.
Added a new function IDAGetNonlinearSystemData which advanced users might find useful if
providing a custom SUNNonlinSolSysFn.
Added the ability to control the CUDA kernel launch parameters for the NVECTOR_CUDA and SUNMATRIX_CUSPARSE
modules. These modules remain experimental and are subject to change from version to version. In
addition, the NVECTOR_CUDA kernels were rewritten to be more flexible. Most users should see equiva-
lent performance or some improvement, but a select few may observe minor performance degradation
with the default settings. Users are encouraged to contact the SUNDIALS team about any perfomance
changes that they notice.

4 Introduction

Added new capabilities for monitoring the solve phase in the SUNNONLINSOL_NEWTON and SUN-
NONLINSOL_FIXEDPOINT modules, and the SUNDIALS iterative linear solver modules. SUNDIALS must
be built with the CMake option SUNDIALS_BUILD_WITH MONITORING to use these capabilties.

Added the optional function IDASetJacTimesResFn to specify an alternative residual function for
computing Jacobian-vector products with the internal difference quotient approximation.

Changes in v5.2.0

Fixed a build system bug related to the Fortran 2003 interfaces when using the IBM XL com-
piler. When building the Fortran 2003 interfaces with an XL compiler it is recommended to set
CMAKE_Fortran COMPILER to £2003, x1£2003, or x1£2003_r.

Fixed a linkage bug affecting Windows users that stemmed from dllimport/dllexport attributes
missing on some SUNDIALS API functions.

Added a new SUNMatrix implementation, SUNMATRIX_CUSPARSE, that interfaces to the sparse ma-
trix implementation from the NVIDIA cuSPARSE library. In addition, the SUNLINSOL_CUSOLVER_BATCHQR
linear solver has been updated to use this matrix, therefore, users of this module will need to update
their code. These modules are still considered to be experimental, thus they are subject to breaking
changes even in minor releases.

The function IDASetLinearSolutionScaling was added to enable or disable the scaling applied
to linear system solutions with matrix-based linear solvers to account for a lagged value of a in the
linear system matrix %—5 +a%—§. Scaling is enabled by default when using a matrix-based linear solver.

Changes in v5.1.0

Fixed a build system bug related to finding LAPACK/BLAS.

Fixed a build system bug related to checking if the KLU library works.

Fixed a build system bug related to finding PETSc when using the CMake variables PETSC_INCLUDES
and PETSC_LIBRARIES instead of PETSC_DIR.

Added a new build system option, CUDA_ARCH, that can be used to specify the CUDA architecture
to compile for.

Added two utility functions, SUNDIALSFileOpen and SUNDIALSFileClose for creating/destroying
file pointers that are useful when using the Fortran 2003 interfaces.

Changes in v5.0.0
Build system changes

e Increased the minimum required CMake version to 3.5 for most SUNDIALS configurations, and
3.10 when CUDA or OpenMP with device offloading are enabled.

e The CMake option BLAS_ENABLE and the variable BLAS_LIBRARIES have been removed to simplify
builds as SUNDIALS packages do not use BLAS directly. For third party libraries that require
linking to BLAS, the path to the BLAS library should be included in the _LIBRARIES variable
for the third party library e.g., SUPERLUDIST LIBRARIES when enabling SuperLU_DIST.

e Fixed a bug in the build system that prevented the NVECTOR_PTHREADS module from being
built.

NVECTOR module changes

e Two new functions were added to aid in creating custom NVECTOR objects. The constructor
N_VNewEmpty allocates an “empty” generic NVECTOR with the object’s content pointer and the
function pointers in the operations structure initialized to NULL. When used in the constructor
for custom objects this function will ease the introduction of any new optional operations to the
NVECTOR API by ensuring only required operations need to be set. Additionally, the function

1.1 Changes from previous versions 5

N_VCopyOps(w, v) has been added to copy the operation function pointers between vector ob-
jects. When used in clone routines for custom vector objects these functions also will ease the
introduction of any new optional operations to the NVECTOR API by ensuring all operations are
copied when cloning objects. See §7.1.6 for more details.

e Two new NVECTOR implementations, NVECTOR_MANYVECTOR and NVECTOR_MPIMANYVECTOR,
have been created to support flexible partitioning of solution data among different processing
elements (e.g., CPU 4+ GPU) or for multi-physics problems that couple distinct MPI-based sim-
ulations together. This implementation is accompanied by additions to user documentation and
SUNDIALS examples. See §7.15 and §7.16 for more details.

e One new required vector operation and ten new optional vector operations have been added to
the NVECTOR API. The new required operation, N_-VGetLength, returns the global length of an
N_Vector. The optional operations have been added to support the new
NVECTOR_MPIMANYVECTOR implementation. The operation N_VGetCommunicator must be im-
plemented by subvectors that are combined to create an NVECTOR_MPIMANYVECTOR, but is not
used outside of this context. The remaining nine operations are optional local reduction oper-
ations intended to eliminate unnecessary latency when performing vector reduction operations
(norms, etc.) on distributed memory systems. The optional local reduction vector operations
are N_VDotProdLocal, N_VMaxNormLocal, N_VMinLocal, N_VL1NormLocal, N_VWSqrSumLocal,
N_VWSqrSumMaskLocal, N_VInvTestLocal, N_VConstrMaskLocal, and N_VMinQuotientLocal.
If an NVECTOR implementation defines any of the local operations as NULL, then the NVEC-
TOR_MPIMANYVECTOR will call standard NVECTOR operations to complete the computation.
See §7.1.4 for more details.

e An additional NVECTOR implementation, NVECTOR_MPIPLUSX, has been created to support
the MPI4+X paradigm where X is a type of on-node parallelism (e.g., OpenMP, CUDA). The
implementation is accompanied by additions to user documentation and SUNDIALS examples.
See §7.17 for more details.

e The * MPICuda and *_MPIRaja functions have been removed from the NVECTOR_CUDA and
NVECTOR_RAJA implementations respectively. Accordingly, the nvector_mpicuda.h,
nvector mpiraja.h, libsundials nvecmpicuda.lib, and 1ibsundials nvecmpicudaraja.lib
files have been removed. Users should use the NVECTOR_MPIPLUSX module coupled in conjunc-
tion with the NVECTOR_CUDA or NVECTOR_RAJA modules to replace the functionality. The
necessary changes are minimal and should require few code modifications. See the programs
in examples/ida/mpicuda and examples/ida/mpiraja for examples of how to use the NVEC-
TOR-MPIPLUSX module with the NVECTOR_CUDA and NVECTOR_RAJA modules respectively.

e Fixed a memory leak in the NVECTOR_PETSC module clone function.

e Made performance improvements to the NVECTOR_CUDA module. Users who utilize a non-default
stream should no longer see default stream synchronizations after memory transfers.

e Added a new constructor to the NVECTOR_CUDA module that allows a user to provide custom
allocate and free functions for the vector data array and internal reduction buffer. See §7.9.1
for more details.

e Added new Fortran 2003 interfaces for most NVECTOR modules. See Chapter 7 for more details
on how to use the interfaces.

e Added three new NVECTOR utility functions, FN_VGetVecAtIndexVectorArray,
FN_VSetVecAtIndexVectorArray, and FN_VNewVectorArray, for working with N_Vector arrays
when using the Fortran 2003 interfaces. See §7.1.6 for more details.

Introduction

SUNMatrix module changes

Two new functions were added to aid in creating custom SUNMATRIX objects. The constructor
SUNMatNewEmpty allocates an “empty” generic SUNMATRIX with the object’s content pointer and
the function pointers in the operations structure initialized to NULL. When used in the constructor
for custom objects this function will ease the introduction of any new optional operations to the
SUNMATRIX API by ensuring only required operations need to be set. Additionally, the function
SUNMatCopyOps (A, B) has been added to copy the operation function pointers between matrix
objects. When used in clone routines for custom matrix objects these functions also will ease the
introduction of any new optional operations to the SUNMATRIX API by ensuring all operations
are copied when cloning objects. See §8.1.2 for more details.

A new operation, SUNMatMatvecSetup, was added to the SUNMATRIX API to perform any setup
necessary for computing a matrix-vector product. This operation is useful for SUNMATRIX imple-
mentations which need to prepare the matrix itself, or communication structures before perform-
ing the matrix-vector product. Users who have implemented custom SUNMATRIX modules will
need to at least update their code to set the corresponding ops structure member, matvecsetup,
to NULL. See §8.1.1 for more details.

The generic SUNMATRIX API now defines error codes to be returned by SUNMATRIX operations.
Operations which return an integer flag indiciating success/failure may return different values
than previously. See §8.1.3 for more details.

A new SUNMATRIX (and SUNLINSOL) implementation was added to facilitate the use of the
SuperLU_DIST library with SUNDIALS. See §8.6 for more details.

Added new Fortran 2003 interfaces for most SUNMATRIX modules. See Chapter 8 for more details
on how to use the interfaces.

SUNLinearSolver module changes

A new function was added to aid in creating custom SUNLINSOL objects. The constructor
SUNLinSolNewEmpty allocates an “empty” generic SUNLINSOL with the object’s content pointer
and the function pointers in the operations structure initialized to NULL. When used in the
constructor for custom objects this function will ease the introduction of any new optional
operations to the SUNLINSOL API by ensuring only required operations need to be set. See §9.3
for more details.

The return type of the SUNLINSOL API function SUNLinSolLastFlag has changed from long
int to sunindextype to be consistent with the type used to store row indices in dense and
banded linear solver modules.

Added a new optional operation to the SUNLINSOL API, SUNLinSolGetID, that returns a
SUNLinearSolver_ID for identifying the linear solver module.

The sUNLINSOL API has been updated to make the initialize and setup functions optional.

A new SUNLINSOL (and SUNMATRIX) implementation was added to facilitate the use of the
SuperLU_DIST library with SUNDIALS. See §9.10 for more details.

Added a new SUNLINSOL implementation, SUNLinearSolver_cuSolverSp_batchQR, which lever-
ages the NVIDIA cuSOLVER sparse batched QR method for efficiently solving block diagonal
linear systems on NVIDIA GPUs. See §9.12 for more details.

Added three new accessor functions to the SUNLINSOL_KLU module, SUNLinSol KLUGetSymbolic,
SUNLinSol_KLUGetNumeric, and SUNLinSol_KLUGetCommon, to provide user access to the under-
lying KLU solver structures. See §9.9.2 for more details.

Added new Fortran 2003 interfaces for most SUNLINSOL modules. See Chapter 9 for more details
on how to use the interfaces.

1.1 Changes from previous versions 7

SUNNonlinearSolver module changes

IDA

A new function was added to aid in creating custom SUNNONLINSOL objects. The constructor
SUNNonlinSolNewEmpty allocates an “empty” generic SUNNONLINSOL with the object’s content
pointer and the function pointers in the operations structure initialized to NULL. When used in
the constructor for custom objects this function will ease the introduction of any new optional
operations to the SUNNONLINSOL API by ensuring only required operations need to be set. See
§10.1.8 for more details.

To facilitate the use of user supplied nonlinear solver convergence test functions the
SUNNonlinSolSetConvTestFn function in the SUNNONLINSOL API has been updated to take a
void* data pointer as input. The supplied data pointer will be passed to the nonlinear solver
convergence test function on each call.

The inputs values passed to the first two inputs of the SUNNonlinSolSolve function in the SUN-
NONLINSOL have been changed to be the predicted state and the initial guess for the correction to
that state. Additionally, the definitions of SUNNonlinSolLSetupFn and SUNNonlinSolLSolveFn
in the SUNNONLINSOL API have been updated to remove unused input parameters. For more
information on the nonlinear system formulation see §10.2 and for more details on the API
functions see Chapter 10.

Added a new SUNNONLINSOL implementation, SUNNONLINSOL_PETSCSNES, which interfaces to
the PETSc SNES nonlinear solver API. See §10.4 for more details.

Added new Fortran 2003 interfaces for most SUNNONLINSOL modules. See Chapter 10 for more
details on how to use the interfaces.

changes

A bug was fixed in the IDA linear solver interface where an incorrect Jacobian-vector product
increment was used with iterative solvers other than SUNLINSOL_SPGMR and SUNLINSOL_SPFGMR.

Fixed a memeory leak in FIDA when not using the default nonlinear solver.

Removed extraneous calls to N_VMin for simulations where the scalar valued absolute tolerance,
or all entries of the vector-valued absolute tolerance array, are strictly positive. In this scenario,
IDA will remove at least one global reduction per time step.

The IDALS interface has been updated to only zero the Jacobian matrix before calling a user-
supplied Jacobian evaluation function when the attached linear solver has type
SUNLINEARSOLVER_DIRECT.

Added the new functions, IDAGetCurentCj, IDAGetCurrentY, IDAGetCurrentYp,
IDAComputeCurrentY, and IDAComputeCurrentYp which may be useful to users who choose to
provide their own nonlinear solver implementations.

Added a Fortran 2003 interface to IDA. See Chapter 5 for more details.

Changes in v4.1.0

An additional NVECTOR implementation was added for the Tpetra vector from the Trilinos library
to facilitate interoperability between SUNDIALS and Trilinos. This implementation is accompanied by
additions to user documentation and SUNDIALS examples.

A bug was fixed where a nonlinear solver object could be freed twice in some use cases.

The EXAMPLES _ENABLE RAJA CMake option has been removed. The option EXAMPLES_ENABLE_CUDA
enables all examples that use CUDA including the RAJA examples with a CUDA back end (if the
RAJA NVECTOR is enabled).

8 Introduction

The implementation header file ida_impl.h is no longer installed. This means users who are
directly manipulating the IDAMem structure will need to update their code to use IDA’s public API.
Python is no longer required to run make test and make test_install.

Changes in v4.0.2

Added information on how to contribute to SUNDIALS and a contributing agreement.
Moved definitions of DLS and SPILS backwards compatibility functions to a source file. The
symbols are now included in the IDA library, 1ibsundials_ida.

Changes in v4.0.1

No changes were made in this release.

Changes in v4.0.0

IDA’s previous direct and iterative linear solver interfaces, IDADLS and IDASPILS, have been merged
into a single unified linear solver interface, IDALS, to support any valid SUNLINSOL module. This
includes the “DIRECT” and “ITERATIVE” types as well as the new “MATRIX_ITERATIVE” type.
Details regarding how IDALS utilizes linear solvers of each type as well as discussion regarding intended
use cases for user-supplied SUNLINSOL implementations are included in Chapter 9. All IDA example
programs and the standalone linear solver examples have been updated to use the unified linear solver
interface.

The unified interface for the new IDALS module is very similar to the previous IDADLS and IDASPILS
interfaces. To minimize challenges in user migration to the new names, the previous C and FORTRAN
routine names may still be used; these will be deprecated in future releases, so we recommend that
users migrate to the new names soon. Additionally, we note that FORTRAN users, however, may need
to enlarge their iout array of optional integer outputs, and update the indices that they query for
certain linear-solver-related statistics.

The names of all constructor routines for SUNDIALS-provided SUNLINSOL implementations have
been updated to follow the naming convention SUNLinSol_* where * is the name of the linear solver.
The new names are SUNLinSol_Band, SUNLinSol Dense, SUNLinSol KLU, SUNLinSol_LapackBand,
SUNLinSol_LapackDense, SUNLinSol_PCG, SUNLinSol_SPBCGS, SUNLinSol_SPFGMR, SUNLinSol_SPGMR,
SUNLinSol _SPTFQMR, and SUNLinSol _SuperLUMT. Solver-specific “set” routine names have been simi-
larly standardized. To minimize challenges in user migration to the new names, the previous routine
names may still be used; these will be deprecated in future releases, so we recommend that users
migrate to the new names soon. All IDA example programs and the standalone linear solver examples
have been updated to use the new naming convention.

The SUNBandMatrix constructor has been simplified to remove the storage upper bandwidth ar-
gument.

SUNDIALS integrators have been updated to utilize generic nonlinear solver modules defined through
the SUNNONLINSOL API. This API will ease the addition of new nonlinear solver options and allow for
external or user-supplied nonlinear solvers. The SUNNONLINSOL API and SUNDIALS provided modules
are described in Chapter 10 and follow the same object oriented design and implementation used by
the NVECTOR, SUNMATRIX, and SUNLINSOL modules. Currently two SUNNONLINSOL implementations
are provided, SUNNONLINSOL_NEWTON and SUNNONLINSOL_FIXEDPOINT. These replicate the previ-
ous integrator specific implementations of a Newton iteration and a fixed-point iteration (previously
referred to as a functional iteration), respectively. Note the SUNNONLINSOL_FIXEDPOINT module can
optionally utilize Anderson’s method to accelerate convergence. Example programs using each of these
nonlinear solver modules in a standalone manner have been added and all IDA example programs have
been updated to use generic SUNNONLINSOL modules.

By default IDA uses the SUNNONLINSOL_NEWTON module. Since IDA previously only used an inter-
nal implementation of a Newton iteration no changes are required to user programs and functions for

1.1 Changes from previous versions 9

setting the nonlinear solver options (e.g., IDASetMaxNonlinIters) or getting nonlinear solver statis-
tics (e.g., IDAGetNumNonlinSolvIters) remain unchanged and internally call generic SUNNONLINSOL
functions as needed. While SUNDIALS includes a fixed-point nonlinear solver module, it is not cur-
rently supported in IDA. For details on attaching a user-supplied nonlinear solver to IDA see Chapter 4.
Additionally, the example program idaRoberts_dns.c explicitly creates an attaches a SUNNONLIN-
SOL_NEWTON object to demonstrate the process of creating and attaching a nonlinear solver module
(note this is not necessary in general as IDA uses the SUNNONLINSOL_NEWTON module by default).

Three fused vector operations and seven vector array operations have been added to the NVEC-
TOR API. These optional operations are disabled by default and may be activated by calling vector
specific routines after creating an NVECTOR (see Chapter 7 for more details). The new operations are
intended to increase data reuse in vector operations, reduce parallel communication on distributed
memory systems, and lower the number of kernel launches on systems with accelerators. The fused op-
erations are N_VLinearCombination, N_.VScaleAddMulti, and N_VDotProdMulti and the vector array
operations are N_VLinearCombinationVectorArray, N_-VScaleVectorArray, N_.VConstVectorArray,
N_VWrmsNormVectorArray, N_-VWrmsNormMaskVectorArray, N_VScaleAddMultiVectorArray, and
N_VLinearCombinationVectorArray. If an NVECTOR implementation defines any of these operations
as NULL, then standard NVECTOR operations will automatically be called as necessary to complete the
computation.

Multiple updates to NVECTOR_CUDA were made:
e Changed N_VGetLength_Cuda to return the global vector length instead of the local vector length.
e Added N_VGetLocalLength Cuda to return the local vector length.
e Added N_VGetMPIComm_Cuda to return the MPI communicator used.
e Removed the accessor functions in the namespace suncudavec.

e Changed the N_VMake_Cuda function to take a host data pointer and a device data pointer instead
of an N_VectorContent_Cuda object.

e Added the ability to set the cudaStream_t used for execution of the NVECTOR_CUDA kernels.
See the function N_VSetCudaStreams_Cuda.

e Added N_VNewManaged Cuda, N_VMakeManaged Cuda, and N_VIsManagedMemory_Cuda functions
to accommodate using managed memory with the NVECTOR_CUDA.

Multiple changes to NVECTOR_RAJA were made:
e Changed N_VGetLength Raja to return the global vector length instead of the local vector length.
e Added N_VGetLocalLength Raja to return the local vector length.
e Added N_VGetMPIComm Raja to return the MPI communicator used.
e Removed the accessor functions in the namespace suncudavec.

A new NVECTOR implementation for leveraging OpenMP 4.5+ device offloading has been added,
NVECTOR_OPENMPDEV. See §7.13 for more details.

Changes in v3.2.1

The changes in this minor release include the following:

e Fixed a bug in the CUDA NVECTOR where the N_VInvTest operation could write beyond the
allocated vector data.

e Fixed library installation path for multiarch systems. This fix changes the default library instal-
lation path to CMAKE_INSTALL_PREFIX/CMAKE_INSTALL_LIBDIR from CMAKE_INSTALL_PREFIX/1lib.
CMAKE_INSTALL_LIBDIR is automatically set, but is available as a CMake option that can modi-
fied.

10 Introduction

Changes in v3.2.0

Fixed a problem with setting sunindextype which would occur with some compilers (e.g. armclang)
that did not define __STDC_VERSION__.

Added hybrid MPI/CUDA and MPI/RAJA vectors to allow use of more than one MPI rank when
using a GPU system. The vectors assume one GPU device per MPI rank.

Changed the name of the RAJA NVECTOR library to libsundials_nveccudaraja.lib from
libsundials nvecraja.lib to better reflect that we only support CUDA as a backend for RAJA cur-
rently.

Several changes were made to the build system:
e CMake 3.1.3 is now the minimum required CMake version.

e Deprecate the behavior of the SUNDIALS_INDEX_TYPE CMake option and added the
SUNDIALS_INDEX_SIZE CMake option to select the sunindextype integer size.

e The native CMake FindMPI module is now used to locate an MPI installation.

e If MPI is enabled and MPI compiler wrappers are not set, the build system will check if
CMAKE <language> COMPILER can compile MPI programs before trying to locate and use an
MPI installation.

e The previous options for setting MPI compiler wrappers and the executable for running MPI
programs have been have been depreated. The new options that align with those used in native
CMake FindMPI module are MPI_C_COMPILER, MPT_CXX_COMPILER, MPI Fortran COMPILER, and
MPIEXEC_EXECUTABLE.

e When a Fortran name-mangling scheme is needed (e.g., ENABLE_LAPACK is ON) the build system
will infer the scheme from the Fortran compiler. If a Fortran compiler is not available or the in-
ferred or default scheme needs to be overridden, the advanced options SUNDIALS_F77_FUNC_CASE
and SUNDIALS_F77_FUNC_UNDERSCORES can be used to manually set the name-mangling scheme
and bypass trying to infer the scheme.

e Parts of the main CMakeLists.txt file were moved to new files in the src and example directories
to make the CMake configuration file structure more modular.

Changes in v3.1.2
The changes in this minor release include the following:

e Updated the minimum required version of CMake to 2.8.12 and enabled using rpath by default
to locate shared libraries on OSX.

e Fixed Windows specific problem where sunindextype was not correctly defined when using
64-bit integers for the SUNDIALS index type. On Windows sunindextype is now defined as the
MSVC basic type __int64.

e Added sparse SUNMatrix “Reallocate” routine to allow specification of the nonzero storage.

e Updated the KLU SUNLinearSolver module to set constants for the two reinitialization types,
and fixed a bug in the full reinitialization approach where the sparse SUNMatrix pointer would
go out of scope on some architectures.

e Updated the “ScaleAdd” and “ScaleAddI” implementations in the sparse SUNMatrix module
to more optimally handle the case where the target matrix contained sufficient storage for the
sum, but had the wrong sparsity pattern. The sum now occurs in-place, by performing the sum

1.1 Changes from previous versions 11

backwards in the existing storage. However, it is still more efficient if the user-supplied Jacobian
routine allocates storage for the sum I + ~J manually (with zero entries if needed).

e Changed the LICENSE install path to instdir/include/sundials.

Changes in v3.1.1

The changes in this minor release include the following:

e Fixed a potential memory leak in the SPGMR and SPFGMR linear solvers: if “Initialize” was
called multiple times then the solver memory was reallocated (without being freed).

e Updated KLU SUNLINSOL module to use a typedef for the precision-specific solve function to
be used (to avoid compiler warnings).

e Added missing typecasts for some (void#*) pointers (again, to avoid compiler warnings).

e Bugfix in sunmatrix_sparse.c where we had used int instead of sunindextype in one location.
e Added missing #include <stdio.h> in NVECTOR and SUNMATRIX header files.

e Added missing prototype for IDASpilsGetNumJTSetupEvals.

e Fixed an indexing bug in the CUDA NVECTOR implementation of N_VWrmsNormMask and revised
the RAJA NVECTOR implementation of N_VWrmsNormMask to work with mask arrays using values
other than zero or one. Replaced double with realtype in the RAJA vector test functions.

e Fixed compilation issue with GCC 7.3.0 and Fortran programs that do not require a SUNMATRIX
module (e.g., iterative linear solvers).

In addition to the changes above, minor corrections were also made to the example programs, build
system, and user documentation.

Changes in v3.1.0

Added NVECTOR print functions that write vector data to a specified file (e.g., N.VPrintFile_Serial).
Added make test and make test_install options to the build system for testing SUNDIALS after
building with make and installing with make install respectively.

Changes in v3.0.0

All interfaces to matrix structures and linear solvers have been reworked, and all example programs
have been updated. The goal of the redesign of these interfaces was to provide more encapsulation and
to ease interfacing of custom linear solvers and interoperability with linear solver libraries. Specific
changes include:

e Added generic SUNMATRIX module with three provided implementations: dense, banded and
sparse. These replicate previous SUNDIALS Dls and Sls matrix structures in a single object-
oriented API.

e Added example problems demonstrating use of generic SUNMATRIX modules.

e Added generic SUNLinearSolver module with eleven provided implementations: SUNDIALS na-
tive dense, SUNDIALS native banded, LAPACK dense, LAPACK band, KLU, SuperLU_MT,
SPGMR, SPBCGS, SPTFQMR, SPFGMR, and PCG. These replicate previous SUNDIALS generic
linear solvers in a single object-oriented API.

e Added example problems demonstrating use of generic SUNLinearSolver modules.

12 Introduction

e Expanded package-provided direct linear solver (DIs) interfaces and scaled, preconditioned, iter-
ative linear solver (Spils) interfaces to utilize generic SUNMATRIX and SUNLinearSolver objects.

e Removed package-specific, linear solver-specific, solver modules (e.g. CVDENSE, KINBAND, IDAKLU,
ARKSPGMR) since their functionality is entirely replicated by the generic Dls/Spils interfaces
and SUNLinearSolver/SUNMATRIX modules. The exception is CVDIAG, a diagonal approximate
Jacobian solver available to CVODE and CVODES.

e Converted all SUNDIALS example problems and files to utilize the new generic SUNMATRIX and
SUNLinearSolver objects, along with updated Dls and Spils linear solver interfaces.

e Added Spils interface routines to ARKODE, CVODE, CVODES, IDA, and IDAS to allow specification
of a user-provided ”JTSetup” routine. This change supports users who wish to set up data
structures for the user-provided Jacobian-times-vector (”JTimes”) routine, and where the cost
of one JTSetup setup per Newton iteration can be amortized between multiple JTimes calls.

Two additional NVECTOR implementations were added — one for CUDA and one for RAJA vectors.
These vectors are supplied to provide very basic support for running on GPU architectures. Users are
advised that these vectors both move all data to the GPU device upon construction, and speedup will
only be realized if the user also conducts the right-hand-side function evaluation on the device. In
addition, these vectors assume the problem fits on one GPU. Further information about RAJA, users
are referred to the web site, https://software.llnl.gov/RAJA/. These additions are accompanied by
additions to various interface functions and to user documentation.

All indices for data structures were updated to a new sunindextype that can be configured to
be a 32- or 64-bit integer data index type. sunindextype is defined to be int32_t or int64_t when
portable types are supported, otherwise it is defined as int or long int. The Fortran interfaces
continue to use long int for indices, except for their sparse matrix interface that now uses the new
sunindextype. This new flexible capability for index types includes interfaces to PETSc, hypre,
SuperLU_MT, and KLU with either 32-bit or 64-bit capabilities depending how the user configures
SUNDIALS.

To avoid potential namespace conflicts, the macros defining booleantype values TRUE and FALSE
have been changed to SUNTRUE and SUNFALSE respectively.

Temporary vectors were removed from preconditioner setup and solve routines for all packages. It
is assumed that all necessary data for user-provided preconditioner operations will be allocated and
stored in user-provided data structures.

The file include/sundials_fconfig.h was added. This file contains SUNDIALS type information
for use in Fortran programs.

The build system was expanded to support many of the xSDK-compliant keys. The xSDK is
a movement in scientific software to provide a foundation for the rapid and efficient production of
high-quality, sustainable extreme-scale scientific applications. More information can be found at,
https://xsdk.info.

Added functions SUNDIALSGetVersion and SUNDIALSGetVersionNumber to get SUNDIALS release
version information at runtime.

In addition, numerous changes were made to the build system. These include the addition of
separate BLAS_ENABLE and BLAS_LIBRARIES CMake variables, additional error checking during CMake
configuration, minor bug fixes, and renaming CMake options to enable/disable examples for greater
clarity and an added option to enable/disable Fortran 77 examples. These changes included changing
EXAMPLES_ENABLE to EXAMPLES_ENABLE C, changing CXX_ENABLE to EXAMPLES ENABLE CXX, changing
F90_ENABLE to EXAMPLES_ENABLE_F90, and adding an EXAMPLES_ENABLE_F77 option.

A bug fix was done to add a missing prototype for IDASetMaxBacksIC in ida.h.

Corrections and additions were made to the examples, to installation-related files, and to the user
documentation.

1.1 Changes from previous versions 13

Changes in v2.9.0

Two additional NVECTOR implementations were added — one for Hypre (parallel) ParVector vectors,
and one for PETSc vectors. These additions are accompanied by additions to various interface func-
tions and to user documentation.

Each NVECTOR module now includes a function, N_VGetVectorID, that returns the NVECTOR
module name.

An optional input function was added to set a maximum number of linesearch backtracks in the
initial condition calculation. Also, corrections were made to three Fortran interface functions.

For each linear solver, the various solver performance counters are now initialized to 0 in both the
solver specification function and in solver linit function. This ensures that these solver counters are
initialized upon linear solver instantiation as well as at the beginning of the problem solution.

A memory leak was fixed in the banded preconditioner interface. In addition, updates were done
to return integers from linear solver and preconditioner ’free’ functions.

The Krylov linear solver Bi-CGstab was enhanced by removing a redundant dot product. Various
additions and corrections were made to the interfaces to the sparse solvers KLU and SuperLU_MT,
including support for CSR format when using KLU.

New examples were added for use of the OpenMP vector.

Minor corrections and additions were made to the IDA solver, to the Fortran interfaces, to the
examples, to installation-related files, and to the user documentation.

Changes in v2.8.0

Two major additions were made to the linear system solvers that are available for use with the 1DA
solver. First, in the serial case, an interface to the sparse direct solver KLU was added. Second,
an interface to SuperLU_MT, the multi-threaded version of SuperLLU, was added as a thread-parallel
sparse direct solver option, to be used with the serial version of the NVECTOR module. As part of
these additions, a sparse matrix (CSC format) structure was added to IDA.

Otherwise, only relatively minor modifications were made to IDA:

In IDARootfind, a minor bug was corrected, where the input array rootdir was ignored, and a
line was added to break out of root-search loop if the initial interval size is below the tolerance ttol.

In IDALapackBand, the line smu = MIN(N-1,mu+ml) was changed to smu = mu + ml to correct an
illegal input error for DGBTRF/DGBTRS.

A minor bug was fixed regarding the testing of the input tstop on the first call to IDASolve.

In order to avoid possible name conflicts, the mathematical macro and function names MIN, MAX,
SQR, RAbs, RSqrt, RExp, RPowerI, and RPowerR were changed to SUNMIN, SUNMAX, SUNSQR, SUNRabs,
SUNRsqrt, SUNRexp, SRpowerI, and SUNRpowerR, respectively. These names occur in both the solver
and in various example programs.

In the FIDA optional input routines FIDASETIIN, FIDASETRIN, and FIDASETVIN, the optional
fourth argument key_length was removed, with hardcoded key string lengths passed to all strncmp
tests.

In all FIDA examples, integer declarations were revised so that those which must match a C type
long int are declared INTEGER*8, and a comment was added about the type match. All other integer
declarations are just INTEGER. Corresponding minor corrections were made to the user guide.

Two new NVECTOR modules have been added for thread-parallel computing environments — one
for OpenMP, denoted NVECTOR_OPENMP, and one for Pthreads, denoted NVECTOR_PTHREADS.

With this version of SUNDIALS, support and documentation of the Autotools mode of installation
is being dropped, in favor of the CMake mode, which is considered more widely portable.

Changes in v2.7.0

One significant design change was made with this release: The problem size and its relatives, band-
width parameters, related internal indices, pivot arrays, and the optional output lsflag have all
been changed from type int to type long int, except for the problem size and bandwidths in user

14 Introduction

calls to routines specifying BLAS/LAPACK routines for the dense/band linear solvers. The func-
tion NewIntArray is replaced by a pair NewIntArray/NewLintArray, for int and long int arrays,
respectively.

A large number of minor errors have been fixed. Among these are the following: After the solver
memory is created, it is set to zero before being filled. To be consistent with IDAS, IDA uses the
function IDAGetDky for optional output retrieval. In each linear solver interface function, the lin-
ear solver memory is freed on an error return, and the **Free function now includes a line setting
to NULL the main memory pointer to the linear solver memory. A memory leak was fixed in two
of the IDASp***Free functions. In the rootfinding functions IDARcheckl/IDARcheck2, when an ex-
act zero is found, the array glo of g values at the left endpoint is adjusted, instead of shifting the
t location tlo slightly. In the installation files, we modified the treatment of the macro SUNDI-
ALS_USE_GENERIC_MATH, so that the parameter GENERIC_MATH_LIB is either defined (with
no value) or not defined.

Changes in v2.6.0

Two new features were added in this release: (a) a new linear solver module, based on BLAS and
LAPACK for both dense and banded matrices, and (b) option to specify which direction of zero-
crossing is to be monitored while performing rootfinding.

The user interface has been further refined. Some of the API changes involve: (a) a reorganization
of all linear solver modules into two families (besides the already present family of scaled precondi-
tioned iterative linear solvers, the direct solvers, including the new LAPACK-based ones, were also
organized into a direct family); (b) maintaining a single pointer to user data, optionally specified
through a Set-type function; (c) a general streamlining of the band-block-diagonal preconditioner
module distributed with the solver.

Changes in v2.5.0

The main changes in this release involve a rearrangement of the entire SUNDIALS source tree (see §3.1).
At the user interface level, the main impact is in the mechanism of including SUNDIALS header files
which must now include the relative path (e.g. #include <cvode/cvode.h>). Additional changes
were made to the build system: all exported header files are now installed in separate subdirectories
of the installation include directory.

A bug was fixed in the internal difference-quotient dense and banded Jacobian approximations,
related to the estimation of the perturbation (which could have led to a failure of the linear solver
when zero components with sufficiently small absolute tolerances were present).

The user interface to the consistent initial conditions calculations was modified. The IDACalcIC
arguments t0, yy0, and ypO were removed and a new function, IDAGetconsistentIC is provided (see
§4.5.5 and §4.5.10.3 for details).

The functions in the generic dense linear solver (sundials_dense and sundials_smalldense) were
modified to work for rectangular m xn matrices (m < n), while the factorization and solution functions
were renamed to DenseGETRF/denGETRF and DenseGETRS/denGETRS, respectively. The factorization
and solution functions in the generic band linear solver were renamed BandGBTRF and BandGBTRS,
respectively.

Changes in v2.4.0

FIDA, a FORTRAN-C interface module, was added (for details see Chapter 5.2).

IDASPBCG and IDASPTFQMR modules have been added to interface with the Scaled Preconditioned
Bi-CGstab (sPBcGS) and Scaled Preconditioned Transpose-Free Quasi-Minimal Residual (SPTFQMR)
linear solver modules, respectively (for details see Chapter 4). At the same time, function type names
for Scaled Preconditioned Iterative Linear Solvers were added for the user-supplied Jacobian-times-
vector and preconditioner setup and solve functions.

1.2 Reading this User Guide 15

The rootfinding feature was added, whereby the roots of a set of given functions may be computed
during the integration of the DAE system.

A user-callable routine was added to access the estimated local error vector.

The deallocation functions now take as arguments the address of the respective memory block
pointer.

To reduce the possibility of conflicts, the names of all header files have been changed by adding
unique prefixes (ida_ and sundials_). When using the default installation procedure, the header
files are exported under various subdirectories of the target include directory. For more details see
Appendix A.

Changes in v2.3.0

The user interface has been further refined. Several functions used for setting optional inputs were
combined into a single one. An optional user-supplied routine for setting the error weight vector was
added. Additionally, to resolve potential variable scope issues, all SUNDIALS solvers release user data
right after its use. The build systems has been further improved to make it more robust.

Changes in v2.2.2

Minor corrections and improvements were made to the build system. A new chapter in the User Guide
was added — with constants that appear in the user interface.

Changes in v2.2.1

The changes in this minor SUNDIALS release affect only the build system.

Changes in v2.2.0

The major changes from the previous version involve a redesign of the user interface across the entire
SUNDIALS suite. We have eliminated the mechanism of providing optional inputs and extracting
optional statistics from the solver through the iopt and ropt arrays. Instead, IDA now provides a
set of routines (with prefix IDASet) to change the default values for various quantities controlling the
solver and a set of extraction routines (with prefix IDAGet) to extract statistics after return from the
main solver routine. Similarly, each linear solver module provides its own set of Set- and Get-type
routines. For more details see §4.5.8 and §4.5.10.

Additionally, the interfaces to several user-supplied routines (such as those providing Jacobians
and preconditioner information) were simplified by reducing the number of arguments. The same
information that was previously accessible through such arguments can now be obtained through
Get-type functions.

Installation of DA (and all of SUNDIALS) has been completely redesigned and is now based on
configure scripts.

1.2 Reading this User Guide

The structure of this document is as follows:

e In Chapter 2, we give short descriptions of the numerical methods implemented by IDA for
the solution of initial value problems for systems of DAEs, along with short descriptions of
preconditioning (§2.2) and rootfinding (§2.3).

e The following chapter describes the structure of the SUNDIALS suite of solvers (§3.1) and the
software organization of the IDA solver (§3.2).

e Chapter 4 is the main usage document for DA for C applications. It includes a complete
description of the user interface for the integration of DAE initial value problems.

16 Introduction

e In Chapter 5.2, we describe FIDA, an interface module for the use of IDA with FORTRAN appli-
cations.

e Chapter 7 gives a brief overview of the generic NVECTOR module shared among the various
components of SUNDIALS, as well as details on the NVECTOR implementations provided with
SUNDIALS.

e Chapter 8 gives a brief overview of the generic SUNMATRIX module shared among the vari-
ous components of SUNDIALS, and details on the SUNMATRIX implementations provided with
SUNDIALS: a dense implementation (§8.3), a banded implementation (§8.4) and a sparse imple-
mentation (§8.5).

e Chapter 9 gives a brief overview of the generic SUNLINSOL module shared among the various
components of SUNDIALS. This chapter contains details on the SUNLINSOL implementations
provided with SUNDIALS. The chapter also contains details on the SUNLINSOL implementations
provided with SUNDIALS that interface with external linear solver libraries.

e Chapter 10 describes the SUNNONLINSOL API and nonlinear solver implementations shared
among the various components of SUNDIALS.

e Finally, in the appendices, we provide detailed instructions for the installation of IDA, within
the structure of SUNDIALS (Appendix A), as well as a list of all the constants used for input to
and output from IDA functions (Appendix B).

Finally, the reader should be aware of the following notational conventions in this user guide:
program listings and identifiers (such as IDAInit) within textual explanations appear in typewriter
type style; fields in C structures (such as content) appear in italics; and packages or modules, such
as IDADLS, are written in all capitals. Usage and installation instructions that constitute important
warnings are marked with a triangular symbol in the margin.

Acknowledgments. We wish to acknowledge the contributions to previous versions of the IDA code
and user guide of Allan G. Taylor.

1.3 SUNDIALS Release License

All SUNDIALS packages are released open source, under the BSD 3-Clause license. The only require-
ments of the license are preservation of copyright and a standard disclaimer of liability. The full text
of the license and an additional notice are provided below and may also be found in the LICENSE
and NOTICE files provided with all SUNDIALS packages.

If you are using SUNDIALS with any third party libraries linked in (e.g., LAPACK, KLU, Su-
perLU_MT, PETSc, or hypre), be sure to review the respective license of the package as that license
may have more restrictive terms than the SUNDIALS license. For example, if someone builds SUNDIALS
with a statically linked KLU, the build is subject to terms of the LGPL license (which is what KLU
is released with) and not the SUNDIALS BSD license anymore.

1.3.1 BSD 3-Clause License

Copyright (¢) 2002-2021, Lawrence Livermore National Security and Southern Methodist University.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

1.3 SUNDIALS Release License 17

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of the copyright holder nor the names of its contributors may be used to en-
dorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.3.2 Additional Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Govern-
ment. Neither the United States Government nor Lawrence Livermore National Security, LLC, nor
any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

1.3.3 SUNDIALS Release Numbers

LLNL-CODE-667205 (ARKODE)
UCRL-CODE-155951 (CVODE)
UCRL-CODE-155950 (CVODES)
UCRL-CODE-155952 (IDA)
UCRL-CODE-237203 (IDAS)
LLNL-CODE-665877 (KINSOL)

Chapter 2

Mathematical Considerations

IDA solves the initial-value problem (IVP) for a DAE system of the general form

F(t7y7y) = Oa y(tO) =Yo, y(tO) = yOa (21)

where y, y, and F' are vectors in RY, t is the independent variable, y = dy/dt, and initial values yq,
Jo are given. (Often ¢ is time, but it certainly need not be.)

2.1 IVP solution

Prior to integrating a DAE initial-value problem, an important requirement is that the pair of vectors
yo and go are both initialized to satisfy the DAE residual F'(to, yo, 90) = 0. For a class of problems that
includes so-called semi-explicit index-one systems, IDA provides a routine that computes consistent
initial conditions from a user’s initial guess [15]. For this, the user must identify sub-vectors of y (not
necessarily contiguous), denoted y4 and y,, which are its differential and algebraic parts, respectively,
such that F' depends on g3 but not on any components of ¢,. The assumption that the system is
“index one” means that for a given ¢ and yg, the system F(t,y,y) = 0 defines y, uniquely. In this
case, a solver within IDA computes y, and 74 at t = tg, given y4 and an initial guess for y,. A second
available option with this solver also computes all of y(¢9) given ¢(to); this is intended mainly for quasi-
steady-state problems, where ¢(tg) = 0 is given. In both cases, IDA solves the system F'(to,yo, %) =0
for the unknown components of yg and g, using Newton iteration augmented with a line search global
strategy. In doing this, it makes use of the existing machinery that is to be used for solving the linear
systems during the integration, in combination with certain tricks involving the step size (which is set
artificially for this calculation). For problems that do not fall into either of these categories, the user
is responsible for passing consistent values, or risks failure in the numerical integration.

The integration method used in IDA is the variable-order, variable-coefficient BDF (Backward
Differentiation Formula), in fixed-leading-coefficient form [11]. The method order ranges from 1 to 5,
with the BDF of order g given by the multistep formula

q
Z Qnp iYn—i = hnyn , (2'2)
1=0

where y,, and ¢, are the computed approximations to y(t,) and ¢(t,), respectively, and the step size
is hy, =t —tn—1. The coefficients a, ; are uniquely determined by the order ¢, and the history of the
step sizes. The application of the BDF (2.2) to the DAE system (2.1) results in a nonlinear algebraic
system to be solved at each step:

q
G(yn) =F (t’rh Yn,s hr_Ll Zan,iyn—i> =0. (23)
=0

20 Mathematical Considerations

By default DA solves (2.3) with a Newton iteration but IDA also allows for user-defined nonlinear
solvers (see Chapter 10). Each Newton iteration requires the solution of a linear system of the form

J[yn(erl) - yn(m)] = _G(yn(m))) (24)
where yy,(,n) is the m-th approximation to y,. Here J is some approximation to the system Jacobian

_9G _9F OF

_ = _ - 2.
oy oy Yoy (2:5)

where o = a;, 0/hs. The scalar o changes whenever the step size or method order changes.

For the solution of the linear systems within the Newton iteration, IDA provides several choices,
including the option of a user-supplied linear solver module (see Chapter 9). The linear solver modules
distributed with SUNDIALS are organized in two families, a direct family comprising direct linear solvers
for dense, banded, or sparse matrices and a spils family comprising scaled preconditioned iterative
(Krylov) linear solvers. The methods offered through these modules are as follows:

e dense direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),

e band direct solvers, using either an internal implementation or a BLAS/LAPACK implementa-
tion (serial or threaded vector modules only),

e sparse direct solver interfaces, using either the KLU sparse solver library [22, 3], or the thread-
enabled SuperLU_MT sparse solver library [39, 24, 9] (serial or threaded vector modules only)
[Note that users will need to download and install the KLU or SUPERLUMT packages independent
of 1DA],

e SPGMR, a scaled preconditioned GMRES (Generalized Minimal Residual method) solver with
or without restarts,

e SPFGMR, a scaled preconditioned FGMRES (Flexible Generalized Minimal Residual method)
solver with or without restarts,

e SPBCGS, a scaled preconditioned Bi-CGStab (Bi-Conjugate Gradient Stable method) solver,

e SPTFQMR, a scaled preconditioned TFQMR (Transpose-Free Quasi-Minimal Residual method)
solver, or

e PCG, a scaled preconditioned CG (Conjugate Gradient method) solver.

For large stiff systems, where direct methods are not feasible, the combination of a BDF integrator and
a preconditioned Krylov method yields a powerful tool because it combines established methods for
stiff integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment
of the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [13]. For
the spils linear solvers with IDA, preconditioning is allowed only on the left (see §2.2). Note that
the dense, band, and sparse direct linear solvers can only be used with serial and threaded vector
representations.

In the process of controlling errors at various levels, IDA uses a weighted root-mean-square norm,
denoted || - |[wrms, for all error-like quantities. The multiplicative weights used are based on the
current solution and on the relative and absolute tolerances input by the user, namely

W; = 1/[RTOL - |y;| + ATOL,] . (2.6)

Because 1/W; represents a tolerance in the component y;, a vector whose norm is 1 is regarded as
“small.” For brevity, we will usually drop the subscript WRMS on norms in what follows.

In the case of a matrix-based linear solver, the default Newton iteration is a Modified Newton
iteration, in that the Jacobian J is fixed (and usually out of date) throughout the nonlinear iterations,
with a coefficient @ in place of « in J. However, in the case that a matrix-free iterative linear solver is

2.1 IVP solution 21

used, the default Newton iteration is an Inexact Newton iteration, in which J is applied in a matrix-
free manner, with matrix-vector products Jv obtained by either difference quotients or a user-supplied
routine. In this case, the linear residual JAy + G is nonzero but controlled. With the default Newton
iteration, the matrix J and preconditioner matrix P are updated as infrequently as possible to balance
the high costs of matrix operations against other costs. Specifically, this matrix update occurs when:

e starting the problem,
e the value @ at the last update is such that o/& < 3/5 or a/a > 5/3, or
e a non-fatal convergence failure occurred with an out-of-date J or P.

The above strategy balances the high cost of frequent matrix evaluations and preprocessing with
the slow convergence due to infrequent updates. To reduce storage costs on an update, Jacobian
information is always reevaluated from scratch.

The default stopping test for nonlinear solver iterations in IDA ensures that the iteration error
Yn — Yn(m) is small relative to y itself. For this, we estimate the linear convergence rate at all

iterations m > 1 as .
R=|[— ,
0

where the 0, = Yn(m) — Yn(m—1) is the correction at iteration m = 1,2,.... The nonlinear solver
iteration is halted if R > 0.9. The convergence test at the m-th iteration is then

S0, < 0.33, (2.7)

where S = R/(R—1) whenever m > 1 and R < 0.9. The user has the option of changing the constant
in the convergence test from its default value of 0.33. The quantity S is set to S = 20 initially and
whenever J or P is updated, and it is reset to S = 100 on a step with «a # &. Note that at m = 1, the
convergence test (2.7) uses an old value for S. Therefore, at the first nonlinear solver iteration, we
make an additional test and stop the iteration if ||6;]] < 0.33 - 107* (since such a §; is probably just
noise and therefore not appropriate for use in evaluating R). We allow only a small number (default
value 4) of nonlinear iterations. If convergence fails with J or P current, we are forced to reduce the
step size h,, and we replace h,, by h,/4. The integration is halted after a preset number (default
value 10) of convergence failures. Both the maximum number of allowable nonlinear iterations and
the maximum number of nonlinear convergence failures can be changed by the user from their default
values.

When an iterative method is used to solve the linear system, to minimize the effect of linear
iteration errors on the nonlinear and local integration error controls, we require the preconditioned
linear residual to be small relative to the allowed error in the nonlinear iteration, i.e., | P~ (Jx+G)|| <
0.05 - 0.33. The safety factor 0.05 can be changed by the user.

When the Jacobian is stored using either dense or band SUNMATRIX objects, the Jacobian J defined
in (2.5) can be either supplied by the user or have IDA compute one internally by difference quotients.
In the latter case, we use the approximation

Jij = [Fi(t,y + 0je;,9 + aoje;) — Fi(t,y,y)]/o;, with
o; = VU max {|y;|, |hy;|, 1/W;} sign(hy;) ,

where U is the unit roundoff, h is the current step size, and Wj is the error weight for the component
y; defined by (2.6). We note that with sparse and user-supplied SUNMATRIX objects, the Jacobian
must be supplied by a user routine.
In the case of an iterative linear solver, if a routine for Jv is not supplied, such products are
approximated by
Ju = [F(t,y + ov,y +aov) = F(t,y,9)]/o

where the increment o = 1/||v||. As an option, the user can specify a constant factor that is inserted
into this expression for o.

22 Mathematical Considerations

During the course of integrating the system, IDA computes an estimate of the local truncation
error, LTE, at the n-th time step, and requires this to satisfy the inequality

ILTE|wrMs < 1.

Asymptotically, LTE varies as h97! at step size h and order ¢, as does the predictor-corrector difference
Ay = Yn — Yn(o)- Thus there is a constant C' such that

LTE = CA,, + O(h?t?),

and so the norm of LTE is estimated as |C| - ||A,||. In addition, IDA requires that the error in the
associated polynomial interpolant over the current step be bounded by 1 in norm. The leading term
of the norm of this error is bounded by C||A,, || for another constant C. Thus the local error test in
IDA is

max{|C], CH| A < 1. (2.8)

A user option is available by which the algebraic components of the error vector are omitted from the
test (2.8), if these have been so identified.

In DA, the local error test is tightly coupled with the logic for selecting the step size and order.
First, there is an initial phase that is treated specially; for the first few steps, the step size is doubled
and the order raised (from its initial value of 1) on every step, until (a) the local error test (2.8) fails,
(b) the order is reduced (by the rules given below), or (c) the order reaches 5 (the maximum). For
step and order selection on the general step, IDA uses a different set of local error estimates, based
on the asymptotic behavior of the local error in the case of fixed step sizes. At each of the orders ¢’
equal to ¢, g—1 (if ¢ > 1), g—2 (if ¢ > 2), or ¢+ 1 (if ¢ < 5), there are constants C'(¢’) such that the
norm of the local truncation error at order ¢’ satisfies

LTE(¢") = C(¢)|¢(¢ + D]l + O(h'),

where ¢(k) is a modified divided difference of order k that is retained by IDA (and behaves asymp-
totically as h*). Thus the local truncation errors are estimated as ELTE(q") = C(¢)||¢(¢’ + 1)|| to
select step sizes. But the choice of order in IDA is based on the requirement that the scaled derivative
norms, ||h*y*)||, are monotonically decreasing with k, for k near q. These norms are again estimated
using the ¢(k), and in fact

|RY 1y @ +D || = T(¢') = (¢ + 1)ELTE(q').

The step/order selection begins with a test for monotonicity that is made even before the local error
test is performed. Namely, the order is reset to ¢/ = ¢—11if (a) ¢ =2 and T'(1) < T(2)/2, or (b) ¢ > 2
and max{T'(q — 1),T(q — 2)} < T(q); otherwise ¢’ = q. Next the local error test (2.8) is performed,
and if it fails, the step is redone at order ¢ < ¢’ and a new step size h’. The latter is based on the
ha*! asymptotic behavior of ELTE(q), and, with safety factors, is given by

n=Hh/h=09/[2ELTE(q)]"/ 4"V

The value of 7 is adjusted so that 0.25 < 5 < 0.9 before setting h «<— b’ = nh. If the local error test
fails a second time, IDA uses = 0.25, and on the third and subsequent failures it uses ¢ = 1 and
n = 0.25. After 10 failures, IDA returns with a give-up message.

As soon as the local error test has passed, the step and order for the next step may be adjusted.
No such change is made if ¢’ = ¢ — 1 from the prior test, if ¢ = 5, or if ¢ was increased on the previous
step. Otherwise, if the last ¢ + 1 steps were taken at a constant order ¢ < 5 and a constant step
size, IDA considers raising the order to ¢ + 1. The logic is as follows: (a) If ¢ = 1, then reset ¢ = 2 if
T(2) <T(1)/2. (b) If ¢ > 1 then

o reset g« q—1ifT(¢—1) <min{T(q), T(¢+1)};

o elsereset ¢ <—q+1if T(g+1) < T(q);

2.2 Preconditioning 23

e leave ¢ unchanged otherwise [then T(¢ — 1) > T'(q) < T'(q + 1)].

In any case, the new step size h’ is set much as before:
n=h'/h =1/[2ELTE(q)]*/ (a1 |

The value of 7 is adjusted such that (a) if n > 2, 5 is reset to 2; (b) if n < 1, n is restricted to
05 <1 <09 and (¢) if 1 <n < 2 we use n = 1. Finally A is reset to ' = nh. Thus we do not
increase the step size unless it can be doubled. See [11] for details.

IDA permits the user to impose optional inequality constraints on individual components of the
solution vector y. Any of the following four constraints can be imposed: y; > 0, y; < 0, y; > 0,
or y; < 0. The constraint satisfaction is tested after a successful nonlinear system solution. If any
constraint fails, we declare a convergence failure of the nonlinear iteration and reduce the step size.
Rather than cutting the step size by some arbitrary factor, IDA estimates a new step size h’ using a
linear approximation of the components in y that failed the constraint test (including a safety factor
of 0.9 to cover the strict inequality case). These additional constraints are also imposed during the
calculation of consistent initial conditions. If a step fails to satisfy the constraints repeatedly within
a step attempt then the integration is halted and an error is returned. In this case the user may need
to employ other strategies as discussed in §4.5.2 to satisfy the inequality constraints.

Normally, IDA takes steps until a user-defined output value ¢t = tqy; is overtaken, and then computes
Y(tout) by interpolation. However, a “one step” mode option is available, where control returns to
the calling program after each step. There are also options to force IDA not to integrate past a given
stopping point ¢ = tsiop-

2.2 Preconditioning

When using a nonlinear solver that requires the solution of a linear system of the form JAy = —G (e.g.,
the default Newton iteration), IDA makes repeated use of a linear solver. If this linear system solve
is done with one of the scaled preconditioned iterative linear solvers supplied with SUNDIALS, these
solvers are rarely successful if used without preconditioning; it is generally necessary to precondition
the system in order to obtain acceptable efficiency. A system Ax = b can be preconditioned on the
left, on the right, or on both sides. The Krylov method is then applied to a system with the matrix
P7'A or AP7Y or P, ' APy, instead of A. However, within 1DA, preconditioning is allowed only on
the left, so that the iterative method is applied to systems (P~1J)Ay = —P~'G. Left preconditioning
is required to make the norm of the linear residual in the nonlinear iteration meaningful; in general,
[JAy + G|| is meaningless, since the weights used in the WRMS-norm correspond to y.

In order to improve the convergence of the Krylov iteration, the preconditioner matrix P should in
some sense approximate the system matrix A. Yet at the same time, in order to be cost-effective, the
matrix P should be reasonably efficient to evaluate and solve. Finding a good point in this tradeoff
between rapid convergence and low cost can be very difficult. Good choices are often problem-
dependent (for example, see [13] for an extensive study of preconditioners for reaction-transport
systems).

Typical preconditioners used with IDA are based on approximations to the iteration matrix of
the systems involved; in other words, P ~ %—Z + a%—g, where « is a scalar inversely proportional to
the integration step size h. Because the Krylov iteration occurs within a nonlinear solver iteration
and further also within a time integration, and since each of these iterations has its own test for
convergence, the preconditioner may use a very crude approximation, as long as it captures the
dominant numerical feature(s) of the system. We have found that the combination of a preconditioner
with the Newton-Krylov iteration, using even a fairly poor approximation to the Jacobian, can be
surprisingly superior to using the same matrix without Krylov acceleration (i.e., a modified Newton
iteration), as well as to using the Newton-Krylov method with no preconditioning.

24 Mathematical Considerations

2.3 Rootfinding

The 1DA solver has been augmented to include a rootfinding feature. This means that, while integrating
the Initial Value Problem (2.1), IDA can also find the roots of a set of user-defined functions g;(¢,y, ¥)
that depend on ¢, the solution vector y = y(t), and its t—derivative g(t). The number of these root
functions is arbitrary, and if more than one g; is found to have a root in any given interval, the various
root locations are found and reported in the order that they occur on the ¢ axis, in the direction of
integration.

Generally, this rootfinding feature finds only roots of odd multiplicity, corresponding to changes in
sign of g;(t, y(t),y(t)), denoted g;(t) for short. If a user root function has a root of even multiplicity (no
sign change), it will probably be missed by IDA. If such a root is desired, the user should reformulate
the root function so that it changes sign at the desired root.

The basic scheme used is to check for sign changes of any g;(t) over each time step taken, and then
(when a sign change is found) to home in on the root (or roots) with a modified secant method [30].
In addition, each time g is computed, IDA checks to see if g;(t) = 0 exactly, and if so it reports this as
a root. However, if an exact zero of any g; is found at a point ¢, IDA computes g at ¢t + § for a small
increment 4§, slightly further in the direction of integration, and if any g;(t + §) = 0 also, IDA stops
and reports an error. This way, each time IDA takes a time step, it is guaranteed that the values of
all g; are nonzero at some past value of ¢, beyond which a search for roots is to be done.

At any given time in the course of the time-stepping, after suitable checking and adjusting has
been done, IDA has an interval (t;,,t5;] in which roots of the g;(t) are to be sought, such that tz; is
further ahead in the direction of integration, and all g;(¢;,) # 0. The endpoint ty; is either t,,, the end
of the time step last taken, or the next requested output time ¢, if this comes sooner. The endpoint
t1, is either t,,_1, or the last output time ¢,y (if this occurred within the last step), or the last root
location (if a root was just located within this step), possibly adjusted slightly toward ¢, if an exact
zero was found. The algorithm checks g at t; for zeros and for sign changes in (¢;,,tp;). If no sign
changes are found, then either a root is reported (if some g;(tx;) = 0) or we proceed to the next time
interval (starting at tp;). If one or more sign changes were found, then a loop is entered to locate the
root to within a rather tight tolerance, given by

7=100%U * (|t,| + |h]) (U = unit roundoff) .

Whenever sign changes are seen in two or more root functions, the one deemed most likely to have
its root occur first is the one with the largest value of |g;(th:)|/|gi(thi) — gi(t10)|, corresponding to the
closest to t;, of the secant method values. At each pass through the loop, a new value t,,;4 is set,
strictly within the search interval, and the values of g;(t;iq) are checked. Then either ¢;, or tp; is reset
t0 tmiq according to which subinterval is found to have the sign change. If there is none in (¢0, tmid)
but some g;(tmiq) = 0, then that root is reported. The loop continues until |tp; — €| < 7, and then
the reported root location is t;.
In the loop to locate the root of g;(t), the formula for ¢,,;q4 is

tmid = thi — (thi — t10)9i(thi)/[9i(thi) — agi(tio)] ,

where o a weight parameter. On the first two passes through the loop, « is set to 1, making t,,;q
the secant method value. Thereafter, « is reset according to the side of the subinterval (low vs high,
i.e. toward t;, vs toward t5;) in which the sign change was found in the previous two passes. If the
two sides were opposite, « is set to 1. If the two sides were the same, « is halved (if on the low
side) or doubled (if on the high side). The value of t,,;q is closer to t;, when a < 1 and closer to tp;
when o > 1. If the above value of t,,;4 is within 7/2 of t;, or tz;, it is adjusted inward, such that its
fractional distance from the endpoint (relative to the interval size) is between .1 and .5 (.5 being the
midpoint), and the actual distance from the endpoint is at least 7/2.

Chapter 3

Code Organization

3.1 SUNDIALS organization

The family of solvers referred to as SUNDIALS consists of the solvers CVODE and ARKODE (for ODE

systems), KINSOL (for nonlinear algebraic systems), and DA (for differential-algebraic systems).

addition, SUNDIALS also includes variants of CVODE and IDA with sensitivity analysis capabilities

(using either forward or adjoint methods), called CVODES and IDAS, respectively.

The various solvers of this family share many subordinate modules. For this reason, it is organized
as a family, with a directory structure that exploits that sharing (see Figures 3.1 and 3.2).

SUNDIALS

[CVODE] [CVODES] [ARKODE] [

)

IDA IDAS

] [KINSOL]

-h-h-h-h

Trilinos

Figure 3.1: High-level diagram of the SUNDIALS suite.

Ea=3

(Crrraun) sroce]

Vectors Matrlces Linear Solvers Nonlmear Solvers
[Serial Parallel (MPI1)] Dense Band Matrix-based Newton Fixed Point
S LU
[PThreads] [OpenMP] [Sparse] [,‘;Jgfgc] [Dense][Band]
[OpenMP DEV] [CUDA] MAGMA Dense LAPACK LAPACK
Dense Band

[HIP] [RAJA] [a][SuperLU]

SYCL] [ManyVector] SuperLU
[DIST CuSOLVER
[MPI ManyVector] [MPI + X]

MAGMA Dense

fRariavE] [PETSc]

[(hypre) Matrix-free

The

26

Code Organization

v v v v v v
| cmake | —| doc | —|examples| —| include | —| src | | test |

—>| arkode | —>| arkode | —>| arkode | —>| arkode |

o ovose] | _ovose]

| cvodes | [cvodes |

e B |

> idas | [idas | -

—[kinsol | [—[__kinsol]

nvector

nvector

[_fmod |
[_ida |

I

sundials

—

idas |

sunmemory

i
il

sunnonlinsol

nvector

—Pl sundials

Figure 3.2: Directory structure of the SUNDIALS source tree.

following is a list of the solver packages presently available, and the basic functionality of each:

e CVODE, a solver for stiff and nonstiff ODE systems dy/dt = f(t,y) based on Adams and BDF
methods;

e CVODES, a solver for stiff and nonstiff ODE systems with sensitivity analysis capabilities;

e ARKODE, a solver for stiff, nonstiff, mixed stiff-nonstiff, and multirate ODE systems Mdy/dt =
fi(t,y) + fa(t,y) based on Runge-Kutta methods;

e DA, a solver for differential-algebraic systems F(t,y,y) = 0 based on BDF methods;

e IDAS, a solver for differential-algebraic systems with sensitivity analysis capabilities;

e KINSOL, a solver for nonlinear algebraic systems F'(u) = 0.

Note for modules that provide interfaces to third-party libraries (i.e., LAPACK, KLU, SUPERLUMT,
SuperLU_DIST, hypre, PETSc, Trilinos, and RAJA) users will need to download and compile those
packages independently.

3.2 IDA organization

The IDA package is written in the ANSI C language. The following summarizes the basic structure of
the package, although knowledge of this structure is not necessary for its use.

The overall organization of the IDA package is shown in Figure 3.3. The central integration module,
implemented in the files ida.h, ida_impl.h, and ida.c, deals with the evaluation of integration

3.2 IDA organization 27

SUNDIALS

IDA
| }
IDALS IDANLS
Linear Solver Interface Nonlinear Solver Interface
Vector | | Matrix | | Linear Solver | | Nonlinear Solver
A 4

Preconditioner Modules

IDABBDPRE

Figure 3.3: Overall structure diagram of the IDA package. Modules specific to IDA begin with “IDA”
(IDALS, IDANLS, and IDABBDPRE), all other items correspond to generic SUNDIALS vector, matrix, and
solver modules (see Figure 3.1).

coefficients, estimation of local error, selection of stepsize and order, and interpolation to user output
points, among other issues.

IDA utilizes generic linear and nonlinear solver modules defined by the SUNLINSOL APT (see Chapter
9) and SUNNONLINSOL API (see Chapter 10) respectively. As such, DA has no knowledge of the
method being used to solve the linear and nonlinear systems that arise in each time step. For any
given user problem, there exists a single nonlinear solver interface and, if necessary, a linear system
solver interface is specified, and invoked as needed during the integration. While SUNDIALS includes a
fixed-point nonlinear solver module, it is not currently supported in IDA (note the fixed-point module
is listed in Figure 3.1 but not Figure 3.3).

IDA now has a single unified linear solver interface, IDALS, supporting both direct and iterative
linear solvers built using the generic SUNLINSOL API (see Chapter 9). These solvers may utilize a
SUNMATRIX object (see Chapter 8) for storing Jacobian information, or they may be matrix-free. Since
IDA can operate on any valid SUNLINSOL implementation, the set of linear solver modules available to
IDA will expand as new SUNLINSOL modules are developed.

For users employing dense or banded Jacobian matrices, IDALS includes algorithms for their ap-
proximation through difference quotients, but the user also has the option of supplying the Jacobian
(or an approximation to it) directly. This user-supplied routine is required when using sparse or
user-supplied Jacobian matrices.

For users employing matrix-free iterative linear solvers, IDALS includes an algorithm for the approx-
imation by difference quotients of the product between the Jacobian matrix and a vector, Jv. Again,
the user has the option of providing routines for this operation, in two phases: setup (preprocessing
of Jacobian data) and multiplication.

For preconditioned iterative methods, the preconditioning must be supplied by the user, again
in two phases: setup and solve. While there is no default choice of preconditioner analogous to
the difference-quotient approximation in the direct case, the references [13, 17], together with the
example and demonstration programs included with IDA, offer considerable assistance in building
preconditioners.

IDA’s linear solver interface consists of four primary routines, devoted to (1) memory allocation
and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing
of memory. The setup and solution phases are separate because the evaluation of Jacobians and
preconditioners is done only periodically during the integration, as required to achieve convergence.

28 Code Organization

The call list within the central IDA module to each of the four associated functions is fixed, thus
allowing the central module to be completely independent of the linear system method.

IDA also provides a preconditioner module, IDABBDPRE, for use with any of the Krylov iterative
linear solvers. It works in conjunction with NVECTOR_PARALLEL and generates a preconditioner that
is a block-diagonal matrix with each block being a banded matrix.

All state information used by IDA to solve a given problem is saved in a structure, and a pointer
to that structure is returned to the user. There is no global data in the IDA package, and so, in this
respect, it is reentrant. State information specific to the linear solver is saved in a separate structure,
a pointer to which resides in the IDA memory structure. The reentrancy of IDA was motivated by the
situation where two or more problems are solved by intermixed calls to the package from one user
program.

Chapter 4

Using IDA for C Applications

This chapter is concerned with the use of IDA for the integration of DAEs in a C language setting.
The following sections treat the header files, the layout of the user’s main program, description of the
IDA user-callable functions, and description of user-supplied functions.

The sample programs described in the companion document [34] may also be helpful. Those codes
may be used as templates (with the removal of some lines involved in testing), and are included in
the DA package.

Users with applications written in FORTRAN should see Chapter 5.2, which describes the FOR-
TRAN/C interface module.

The user should be aware that not all SUNLINSOL and SUNMATRIX modules are compatible with
all NVECTOR implementations. Details on compatibility are given in the documentation for each
SUNMATRIX module (Chapter 8) and each SUNLINSOL module (Chapter 9). For example, NVEC-
TOR_PARALLEL is not compatible with the dense, banded, or sparse SUNMATRIX types, or with the
corresponding dense, banded, or sparse SUNLINSOL modules. Please check Chapters 8 and 9 to verify
compatibility between these modules. In addition to that documentation, we note that the precon-
ditioner module IDABBDPRE can only be used with NVECTOR_PARALLEL. It is not recommended to
use a threaded vector module with SuperLU_MT unless it is the NVECTOR_OPENMP module, and
SuperLU_MT is also compiled with OpenMP.

IDA uses various constants for both input and output. These are defined as needed in this chapter,
but for convenience are also listed separately in Appendix B.

4.1 Access to library and header files

At this point, it is assumed that the installation of 1DA, following the procedure described in Appendix
A, has been completed successfully.

Regardless of where the user’s application program resides, its associated compilation and load
commands must make reference to the appropriate locations for the library and header files required
by IDA. The relevant library files are

e [ibdir/1libsundials_ida. lib,
e [ibdir/1libsundials _nvecx. [ib,

where the file extension .lib is typically .so for shared libraries and .a for static libraries. The relevant
header files are located in the subdirectories

e incdir/include/ida
e incdir/include/sundials

e incdir/include/nvector

30 Using IDA for C Applications

e incdir/include/sunmatrix
e incdir/include/sunlinsol
e incdir/include/sunnonlinsol

The directories libdir and incdir are the install library and include directories, respectively. For
a default installation, these are instdir/lib and instdir/include, respectively, where instdir is the
directory where SUNDIALS was installed (see Appendix A).

Note that an application cannot link to both the IDA and IDAS libraries because both contain
user-callable functions with the same names (to ensure that IDAS is backward compatible with IDA).
Therefore, applications that contain both DAE problems and DAEs with sensitivity analysis, should
use IDAS.

4.2 Data types

The sundials_types.h file contains the definition of the type realtype, which is used by the SUNDIALS
solvers for all floating-point data, the definition of the integer type sunindextype, which is used
for vector and matrix indices, and booleantype, which is used for certain logic operations within
SUNDIALS.

4.2.1 Floating point types

The type realtype can be float, double, or long double, with the default being double. The user
can change the precision of the SUNDIALS solvers arithmetic at the configuration stage (see §A.1.2).

Additionally, based on the current precision, sundials_types.h defines BIG_.REAL to be the largest
value representable as a realtype, SMALL _REAL to be the smallest value representable as a realtype,
and UNIT_ROUNDOFF to be the difference between 1.0 and the minimum realtype greater than 1.0.

Within SUNDIALS, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the definition realtype. In ANSI C, a floating-point constant with no
suffix is stored as a double. Placing the suffix “F” at the end of a floating point constant makes it a
float, whereas using the suffix “I.” makes it a long double. For example,

#define A 1.0
#define B 1.0F
#define C 1.0L

defines A to be a double constant equal to 1.0, B to be a float constant equal to 1.0, and C to be
a long double constant equal to 1.0. The macro call RCONST(1.0) automatically expands to 1.0 if
realtype is double, to 1.0F if realtype is float, or to 1.0L if realtype is long double. SUNDIALS
uses the RCONST macro internally to declare all of its floating-point constants.

Additionally, SUNDIALS defines several macros for common mathematical functions e.g., fabs,
sqrt, exp, etc. in sundials math.h. The macros are prefixed with SUNR and expand to the appro-
priate C function based on the realtype. For example, the macro SUNRabs expands to the C function
fabs when realtype is double, fabsf when realtype is float, and fabsl when realtype is long
double.

A user program which uses the type realtype, the RCONST macro, and the SUNR mathematical
function macros is precision-independent except for any calls to precision-specific library functions.
Our example programs use realtype, RCONST, and the SUNR macros. Users can, however, use the type
double, float, or long double in their code (assuming that this usage is consistent with the typedef
for realtype) and call the appropriate math library functions directly. Thus, a previously existing
piece of ANSI C code can use SUNDIALS without modifying the code to use realtype, RCONST, or the
SUNR macros so long as the SUNDIALS libraries use the correct precision (for details see §A.1.2).

4.3 Header files 31

4.2.2 Integer types used for indexing

The type sunindextype is used for indexing array entries in SUNDIALS modules (e.g., vectors lengths
and matrix sizes) as well as for storing the total problem size. During configuration sunindextype
may be selected to be either a 32- or 64-bit signed integer with the default being 64-bit. See §A.1.2
for the configuration option to select the desired size of sunindextype. When using a 32-bit integer
the total problem size is limited to 23! — 1 and with 64-bit integers the limit is 263 — 1. For users with
problem sizes that exceed the 64-bit limit an advanced configuration option is available to specify the
type used for sunindextype.

A user program which uses sunindextype to handle indices will work with both index storage types
except for any calls to index storage-specific external libraries. Our C and C++ example programs
use sunindextype. Users can, however, use any compatible type (e.g., int, long int, int32_t,
int64_t, or long long int) in their code, assuming that this usage is consistent with the typedef
for sunindextype on their architecture. Thus, a previously existing piece of ANSI C code can use
SUNDIALS without modifying the code to use sunindextype, so long as the SUNDIALS libraries use the
appropriate index storage type (for details see §A.1.2).

4.3 Header files

The calling program must include several header files so that various macros and data types can be
used. The header file that is always required is:

e ida/ida.h, the header file for IDA, which defines the several types and various constants, and
includes function prototypes. This includes the header file for IDALS, ida/ida_1s.h.

Note that ida.h includes sundials_types.h, which defines the types realtype, sunindextype, and
booleantype and the constants SUNFALSE and SUNTRUE.

The calling program must also include an NVECTOR implementation header file, of the form
nvector/nvector_***.h. See Chapter 7 for the appropriate name. This file in turn includes the
header file sundials nvector.h which defines the abstract N_Vector data type.

If using a non-default nonlinear solver module, or when interacting with a SUNNONLINSOL module
directly, the calling program must also include a SUNNONLINSOL implementation header file, of the form
sunnonlinsol/sunnonlinsol_#**.h where *** is the name of the nonlinear solver module (see Chap-
ter 10 for more information). This file in turn includes the header file sundials nonlinearsolver.h
which defines the abstract SUNNonlinearSolver data type.

If using a nonlinear solver that requires the solution of a linear system of the form (2.4) (e.g.,
the default Newton iteration), a linear solver module header file is also required. The header files
corresponding to the various SUNDIALS-provided linear solver modules available for use with IDA are:

e Direct linear solvers:
— sunlinsol/sunlinsol dense.h, which is used with the dense linear solver module, SUN-

LINSOL_DENSE;

— sunlinsol/sunlinsol_band.h, which is used with the banded linear solver module, SUN-
LINSOL_BAND;

— sunlinsol/sunlinsol_lapackdense.h, which is used with the LAPACK dense linear solver
module, SUNLINSOL_LAPACKDENSE;

— sunlinsol/sunlinsol_lapackband.h, which is used with the LAPACK banded linear
solver module, SUNLINSOL_LAPACKBAND;

— sunlinsol/sunlinsol_klu.h, which is used with the KLU sparse linear solver module,
SUNLINSOL_KLU;

— sunlinsol/sunlinsol_superlumt.h, which is used with the SUPERLUMT sparse linear
solver module, SUNLINSOL_SUPERLUMT;

32 Using IDA for C Applications

e Iterative linear solvers:

— sunlinsol/sunlinsol_spgmr.h, which is used with the scaled, preconditioned GMRES
Krylov linear solver module, SUNLINSOL_SPGMR;

— sunlinsol/sunlinsol_spfgmr.h, which is used with the scaled, preconditioned FGMRES
Krylov linear solver module, SUNLINSOL_SPFGMR,;

— sunlinsol/sunlinsol_spbcgs.h, which is used with the scaled, preconditioned Bi-CGStab
Krylov linear solver module, SUNLINSOL_SPBCGS;

— sunlinsol/sunlinsol_sptfqmr.h, which is used with the scaled, preconditioned TFQMR,
Krylov linear solver module, SUNLINSOL_SPTFQMR;

— sunlinsol/sunlinsol_pcg.h, which is used with the scaled, preconditioned CG Krylov
linear solver module, SUNLINSOL_PCG;

The header files for the SUNLINSOL_DENSE and SUNLINSOL_LAPACKDENSE linear solver modules
include the file sunmatrix/sunmatrix_dense.h, which defines the SUNMATRIX_DENSE matrix module,
as as well as various functions and macros acting on such matrices.

The header files for the SUNLINSOL_BAND and SUNLINSOL_LAPACKBAND linear solver modules in-
clude the file sunmatrix/sunmatrix_band.h, which defines the SUNMATRIX_BAND matrix module, as
as well as various functions and macros acting on such matrices.

The header files for the SUNLINSOL_KLU and SUNLINSOL_SUPERLUMT sparse linear solvers include
the file sunmatrix/sunmatrix_sparse.h, which defines the SUNMATRIX_SPARSE matrix module, as
well as various functions and macros acting on such matrices.

The header files for the Krylov iterative solvers include the file sundials/sundials_iterative.h,
which enumerates the kind of preconditioning, and (for the SPGMR and SPFGMR solvers) the choices
for the Gram-Schmidt process.

Other headers may be needed, according to the choice of preconditioner, etc. For example, in the
idaFoodWeb kry_p example (see [34]), preconditioning is done with a block-diagonal matrix. For this,
even though the SUNLINSOL_SPGMR linear solver is used, the header sundials/sundials_dense.h is
included for access to the underlying generic dense matrix arithmetic routines.

4.4 A skeleton of the user’s main program

The following is a skeleton of the user’s main program (or calling program) for the integration of a DAE
IVP. Most of the steps are independent of the NVECTOR, SUNMATRIX, SUNLINSOL, and SUNNONLINSOL
implementations used. For the steps that are not, refer to Chapter 7, 8, 9, and 10 for the specific
name of the function to be called or macro to be referenced.
1. Initialize parallel or multi-threaded environment, if appropriate
For example, call MPI_Init to initialize MPI if used, or set num_threads, the number of threads
to use within the threaded vector functions, if used.
2. Set problem dimensions etc.
This generally includes the problem size N, and may include the local vector length Nlocal.

Note: The variables N and Nlocal should be of type sunindextype.

3. Set vectors of initial values

To set the vectors yO and ypO to initial values for y and ¢, use the appropriate functions defined
by the particular NVECTOR implementation.

For native SUNDIALS vector implementations, use a call of the form yO = N_VMake **x(...,
ydata) if the realtype array ydata containing the initial values of y already exists. Otherwise,
create a new vector by making a call of the form yO = N_VNew_***(...), and then set its elements

4.4 A skeleton of the user’s main program 33

by accessing the underlying data with a call of the form ydata = N_VGetArrayPointer(y0). See
§7.3-7.6 for details.

For the hypre and PETSc vector wrappers, first create and initialize the underlying vector and
then create an NVECTOR wrapper with a call of the form y0 = N_VMake_***(yvec), where yvec
is a hypre or PETSc vector. Note that calls like N.VNew_***(...) and N_-VGetArrayPointer(...)
are not available for these vector wrappers. See §7.7 and §7.8 for details.

Set the vector ypO of initial conditions for ¢ similarly.

4. Create IDA object

Call idamem = IDACreate() to create the IDA memory block. IDACreate returns a pointer to
the IDA memory structure. See §4.5.1 for details. This void * pointer must then be passed as the
first argument to all subsequent IDA function calls.

5. Initialize IDA solver

Call IDAInit(...) to provide required problem specifications (residual function, initial time, and
initial conditions), allocate internal memory for IDA, and initialize IDA. IDAInit returns an error
flag to indicate success or an illegal argument value. See §4.5.1 for details.

6. Specify integration tolerances

Call IDASStolerances(...) or IDASVtolerances(...) to specify, respectively, a scalar relative
tolerance and scalar absolute tolerance, or a scalar relative tolerance and a vector of absolute
tolerances. Alternatively, call IDAWFtolerances to specify a function which sets directly the
weights used in evaluating WRMS vector norms. See §4.5.2 for details.

7. Create matrix object

If a nonlinear solver requiring a linear solver will be used (e.g., the default Newton iteration)
and the linear solver will be a matrix-based linear solver, then a template Jacobian matrix must
be created by calling the appropriate constructor function defined by the particular SUNMATRIX
implementation.

For the SUNDIALS-supplied SUNMATRIX implementations, the matrix object may be created using
a call of the form

SUNMatrix J = SUNBandMatrix(...);
or
SUNMatrix J = SUNDenseMatrix(...);
or
SUNMatrix J = SUNSparseMatrix(...);
NOTE: The dense, banded, and sparse matrix objects are usable only in a serial or threaded
environment.
8. Create linear solver object

If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then
the desired linear solver object must be created by calling the appropriate constructor function
defined by the particular SUNLINSOL implementation.

For any of the SUNDIALS-supplied SUNLINSOL implementations, the linear solver object may be
created using a call of the form

SUNLinearSolver LS = SUNLinSol_*(...);

where * can be replaced with “Dense”, “SPGMR”, or other options, as discussed in §4.5.3 and
Chapter 9.

34

Using IDA for C Applications

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Set linear solver optional inputs

Call *Set* functions from the selected linear solver module to change optional inputs specific to
that linear solver. See the documentation for each SUNLINSOL module in Chapter 9 for details.
Attach linear solver module

If a nonlinear solver requiring a linear solver is chosen (e.g., the default Newton iteration), then
initialize the IDALS linear solver interface by attaching the linear solver object (and matrix object,
if applicable) with the following call (for details see §4.5.3):

ier = IDASetLinearSolver(...);

Set optional inputs

Optionally, call IDASet* functions to change from their default values any optional inputs that
control the behavior of IDA. See §4.5.8.1 and §4.5.8 for details.

Create nonlinear solver object (optional)

If using a non-default nonlinear solver (see §4.5.4), then create the desired nonlinear solver object
by calling the appropriate constructor function defined by the particular SUNNONLINSOL imple-
mentation (e.g., NLS = SUNNonlinSol ***(...); where **x is the name of the nonlinear solver
(see Chapter 10 for details).

Attach nonlinear solver module (optional)

If using a non-default nonlinear solver, then initialize the nonlinear solver interface by attaching the
nonlinear solver object by calling ier = IDASetNonlinearSolver(ida mem, NLS); (see §4.5.4 for
details).

Set nonlinear solver optional inputs (optional)

Call the appropriate set functions for the selected nonlinear solver module to change optional
inputs specific to that nonlinear solver. These must be called after IDAInit if using the default
nonlinear solver or after attaching a new nonlinear solver to IDA, otherwise the optional inputs
will be overridden by 1DA defaults. See Chapter 10 for more information on optional inputs.
Correct initial values

Optionally, call IDACalcIC to correct the initial values yO and ypO passed to IDAInit. See §4.5.5.
Also see §4.5.8.3 for relevant optional input calls.

Specify rootfinding problem

Optionally, call IDARootInit to initialize a rootfinding problem to be solved during the integration
of the DAE system. See §4.5.6 for details, and see §4.5.8.4 for relevant optional input calls.
Advance solution in time

For each point at which output is desired, call flag = IDASolve(ida_mem, tout, &tret, yret,
ypret, itask). Here itask specifies the return mode. The vector yret (which can be the same
as the vector yO above) will contain y(t), while the vector ypret (which can be the same as the
vector ypO above) will contain §(t). See §4.5.7 for details.

Get optional outputs

Call IDA*Get* functions to obtain optional output. See §4.5.10 for details.

Deallocate memory for solution vectors

Upon completion of the integration, deallocate memory for the vectors yret and ypret (or y and
yp) by calling the appropriate destructor function defined by the NVECTOR implementation:

4.5 User-callable functions 35

N_VDestroy(yret) ;

and similarly for ypret.

20. Free solver memory

IDAFree(&ida mem) to free the memory allocated for IDA.

21. Free nonlinear solver memory (optional)

If a non-default nonlinear solver was used, then call SUNNonlinSolFree (NLS) to free any memory
allocated for the SUNNONLINSOL object.

22. Free linear solver and matrix memory

Call SUNLinSolFree and SUNMatDestroy to free any memory allocated for the linear solver and
matrix objects created above.

23. Finalize MPI, if used
Call MPI_Finalize() to terminate MPI.

SUNDIALS provides some linear solvers only as a means for users to get problems running and not
as highly efficient solvers. For example, if solving a dense system, we suggest using the LAPACK
solvers if the size of the linear system is > 50,000. (Thanks to A. Nicolai for his testing and rec-
ommendation.) Table 4.1 shows the linear solver interfaces available as SUNLINSOL modules and the
vector implementations required for use. As an example, one cannot use the dense direct solver inter-
faces with the MPI-based vector implementation. However, as discussed in Chapter 9 the SUNDIALS
packages operate on generic SUNLINSOL objects, allowing a user to develop their own solvers should
they so desire.

Table 4.1: SUNDIALS linear solver interfaces and vector implementations that can be used for each.

= &%

EIZE |25 L2z :8

Linear Solver | o ttf % 8 Hcl § = 8 Zﬂd 5 @
Dense | v v | Vv v
Band | v v |V v
LapackDense | v/ v |V v
LapackBand | v/ v |V v
KLU | vV v IV v
SUPERLUMT | v vV IV v
SPGMR | v v VAN A VA VA 4 v
SPFGMR. | v/ v VIiVvIiVvIiVvIVvI]Y v
SPBCGS | vV v VAN A VA VA 4 v
SPTFQMR | v v VIivIiVvIiVvI|IVvI]Y v
PCG | vV v VIV IV IV IVIV v
User Supp. | v v VIiVvIiVvIiVvI|IVvI]Y v

4.5 User-callable functions

This section describes the IDA functions that are called by the user to set up and solve a DAE. Some of
these are required. However, starting with §4.5.8, the functions listed involve optional inputs/outputs
or restarting, and those paragraphs can be skipped for a casual use of IDA. In any case, refer to §4.4
for the correct order of these calls.

36 Using IDA for C Applications

On an error, each user-callable function returns a negative value and sends an error message to
the error handler routine, which prints the message on stderr by default. However, the user can set
a file as error output or can provide his own error handler function (see §4.5.8.1).

4.5.1 IDA initialization and deallocation functions

The following three functions must be called in the order listed. The last one is to be called only after
the DAE solution is complete, as it frees the IDA memory block created and allocated by the first two
calls.

IDACreate

Call ida_mem = IDACreate();
Description The function IDACreate instantiates an IDA solver object.
Arguments IDACreate has no arguments.

Return value If successful, IDACreate returns a pointer to the newly created IDA memory block (of
type void *). Otherwise it returns NULL.

F2003 Name FIDACreate

Call flag = IDAInit(ida_mem, res, tO, yO, ypO);

Description The function IDAInit provides required problem and solution specifications, allocates
internal memory, and initializes IDA.

Arguments idamem (void *) pointer to the IDA memory block returned by IDACreate.

res (IDAResFn) is the C function which computes the residual function F' in the
DAE. This function has the form res(t, yy, yp, resval, user_data). For
full details see §4.6.1.

t0 (realtype) is the initial value of t.
yO (N_Vector) is the initial value of y.
ypO (N_Vector) is the initial value of g.

Return value The return value flag (of type int) will be one of the following;:

IDA_SUCCESS The call to IDAInit was successful.

IDA MEM NULL The IDA memory block was not initialized through a previous call to
IDACreate.

IDA_MEM FAIL A memory allocation request has failed.
IDA_ILL_INPUT An input argument to IDAInit has an illegal value.

Notes If an error occurred, IDAInit also sends an error message to the error handler function.

F2003 Name FIDAInit

Call IDAFree(&ida_mem) ;

Description The function IDAFree frees the pointer allocated by a previous call to IDACreate.
Arguments The argument is the pointer to the IDA memory block (of type void *).

Return value The function IDAFree has no return value.

F2003 Name FIDAFree

4.5 User-callable functions 37

4.5.2 IDA tolerance specification functions

One of the following three functions must be called to specify the integration tolerances (or directly
specify the weights used in evaluating WRMS vector norms). Note that this call must be made after
the call to IDAInit.

’IDASStolerances‘

Call flag = IDASStolerances(ida_mem, reltol, abstol);
Description The function IDASStolerances specifies scalar relative and absolute tolerances.
Arguments idamem (void *) pointer to the IDA memory block returned by IDACreate.
reltol (realtype) is the scalar relative error tolerance.
abstol (realtype) is the scalar absolute error tolerance.
Return value The return value flag (of type int) will be one of the following;:
IDA_SUCCESS The call to IDASStolerances was successful.

IDA_MEM NULL The IDA memory block was not initialized through a previous call to
IDACreate.

IDA_NO_MALLOC The allocation function IDAInit has not been called.
IDA_TLL_INPUT One of the input tolerances was negative.

F2003 Name FIDASStolerances

’IDASVtolerances
Call flag = IDASVtolerances(ida_mem, reltol, abstol);

Description The function IDASVtolerances specifies scalar relative tolerance and vector absolute
tolerances.

Arguments idamem (void *) pointer to the IDA memory block returned by IDACreate.
reltol (realtype) is the scalar relative error tolerance.
abstol (N_Vector) is the vector of absolute error tolerances.

Return value The return value flag (of type int) will be one of the following;:

IDA_SUCCESS The call to IDASVtolerances was successful.

IDA_MEM_NULL The IDA memory block was not initialized through a previous call to
IDACreate.

IDA_NO_MALLOC The allocation function IDAInit has not been called.
IDA_ILL_INPUT The relative error tolerance was negative or the absolute tolerance had
a negative component.

Notes This choice of tolerances is important when the absolute error tolerance needs to be
different for each component of the state vector y.

F2003 Name FIDASVtolerances

\IDAWFtolerances\

Call flag = IDAWFtolerances(ida_mem, efun);

Description The function IDAWFtolerances specifies a user-supplied function efun that sets the

multiplicative error weights W; for use in the weighted RMS norm, which are normally
defined by Eq. (2.6).

Arguments idamem (void *) pointer to the IDA memory block returned by IDACreate.
efun (IDAEwtFn) is the C function which defines the ewt vector (see §4.6.3).

Return value The return value flag (of type int) will be one of the following:

38 Using IDA for C Applications

IDA_SUCCESS The call to IDAWFtolerances was successful.

IDA MEM NULL The IDA memory block was not initialized through a previous call to
IDACreate.

IDA_NO_MALLOC The allocation function IDAInit has not been called.

F2003 Name FIDAWFtolerances

General advice on choice of tolerances. For many users, the appropriate choices for tolerance
values in reltol and abstol are a concern. The following pieces of advice are relevant.

(1) The scalar relative tolerance reltol is to be set to control relative errors. So reltol=10"*%
means that errors are controlled to .01%. We do not recommend using reltol larger than 1073,
On the other hand, reltol should not be so small that it is comparable to the unit roundoff of the
machine arithmetic (generally around 1071%).

(2) The absolute tolerances abstol (whether scalar or vector) need to be set to control absolute
errors when any components of the solution vector y may be so small that pure relative error control
is meaningless. For example, if y[i] starts at some nonzero value, but in time decays to zero, then
pure relative error control on y[i] makes no sense (and is overly costly) after y[i] is below some
noise level. Then abstol (if scalar) or abstol[i] (if a vector) needs to be set to that noise level. If
the different components have different noise levels, then abstol should be a vector. See the example
idaRoberts_dns in the IDA package, and the discussion of it in the IDA Examples document [34]. In
that problem, the three components vary between 0 and 1, and have different noise levels; hence the
abstol vector. It is impossible to give any general advice on abstol values, because the appropriate
noise levels are completely problem-dependent. The user or modeler hopefully has some idea as to
what those noise levels are.

(3) Finally, it is important to pick all the tolerance values conservatively, because they control the
error committed on each individual time step. The final (global) errors are a sort of accumulation of
those per-step errors. A good rule of thumb is to reduce the tolerances by a factor of .01 from the actual
desired limits on errors. So if you want .01% accuracy (globally), a good choice is reltol= 10"5. But
in any case, it is a good idea to do a few experiments with the tolerances to see how the computed
solution values vary as tolerances are reduced.

Advice on controlling unphysical negative values. In many applications, some components
in the true solution are always positive or non-negative, though at times very small. In the numerical
solution, however, small negative (hence unphysical) values can then occur. In most cases, these values
are harmless, and simply need to be controlled, not eliminated. The following pieces of advice are
relevant.

(1) The way to control the size of unwanted negative computed values is with tighter absolute
tolerances. Again this requires some knowledge of the noise level of these components, which may or
may not be different for different components. Some experimentation may be needed.

(2) If output plots or tables are being generated, and it is important to avoid having negative
numbers appear there (for the sake of avoiding a long explanation of them, if nothing else), then
eliminate them, but only in the context of the output medium. Then the internal values carried
by the solver are unaffected. Remember that a small negative value in yret returned by IDA, with
magnitude comparable to abstol or less, is equivalent to zero as far as the computation is concerned.

(3) The user’s residual routine res should never change a negative value in the solution vector yy
to a non-negative value, as a ”solution” to this problem. This can cause instability. If the res routine
cannot tolerate a zero or negative value (e.g., because there is a square root or log of it), then the
offending value should be changed to zero or a tiny positive number in a temporary variable (not in
the input yy vector) for the purposes of computing F'(t,y,).

(4) DA provides the option of enforcing positivity or non-negativity on components. Also, such
constraints can be enforced by use of the recoverable error return feature in the user-supplied residual
function. However, because these options involve some extra overhead cost, they should only be
exercised if the use of absolute tolerances to control the computed values is unsuccessful.

4.5 User-callable functions 39

4.5.3 Linear solver interface functions

As previously explained, if the nonlinear solver requires the solution of linear systems of the form (2.4)
(e.g., the default Newton iteration, then solution of these linear systems is handled with the IDALS
linear solver interface. This interface supports all valid SUNLINSOL modules. Here, matrix-based
SUNLINSOL modules utilize SUNMATRIX objects to store the Jacobian matrix J = 0F/dy + adF/dy
and factorizations used throughout the solution process. Conversely, matrix-free SUNLINSOL modules
instead use iterative methods to solve the linear systems of equations, and only require the action of
the Jacobian on a vector, Juv.

With most iterative linear solvers, preconditioning can be done on the left only, on the right only,
on both the left and the right, or not at all. The exceptions to this rule are SPFGMR that supports
right preconditioning only and PCG that performs symmetric preconditioning. However, in IDA only
left preconditioning is supported. For the specification of a preconditioner, see the iterative linear
solver sections in §4.5.8 and §4.6. A preconditioner matrix P must approximate the Jacobian J, at
least crudely.

To specify a generic linear solver to IDA, after the call to IDACreate but before any calls to
IDASolve, the user’s program must create the appropriate SUNLINSOL object and call the function
IDASetLinearSolver, as documented below. To create the SUNLinearSolver object, the user may
call one of the SUNDIALS-packaged SUNLINSOL module constructor routines via a call of the form

SUNLinearSolver LS = SUNLinSol_x*(...);

The current list of such constructor routines includes SUNLinSol Dense, SUNLinSol Band,
SUNLinSol_LapackDense, SUNLinSol_LapackBand, SUNLinSol_KLU, SUNLinSol_SuperLUMT,
SUNLinSol_SPGMR, SUNLinSol_SPFGMR, SUNLinSol_SPBCGS, SUNLinSol_SPTFQMR, and SUNLinSol_PCG.

Alternately, a user-supplied SUNLinearSolver module may be created and used instead. The use
of each of the generic linear solvers involves certain constants, functions and possibly some macros,
that are likely to be needed in the user code. These are available in the corresponding header file
associated with the specific SUNMATRIX or SUNLINSOL module in question, as described in Chapters
8 and 9.

Once this solver object has been constructed, the user should attach it to IDA via a call to
IDASetLinearSolver. The first argument passed to this function is the IDA memory pointer returned
by IDACreate; the second argument is the desired SUNLINSOL object to use for solving systems. The
third argument is an optional SUNMATRIX object to accompany matrix-based SUNLINSOL inputs (for
matrix-free linear solvers, the third argument should be NULL). A call to this function initializes the
IDALS linear solver interface, linking it to the main IDA integrator, and allows the user to specify
additional parameters and routines pertinent to their choice of linear solver.

’IDASetLinearSolver‘
Call flag = IDASetLinearSolver(ida_mem, LS, J);

Description The function IDASetLinearSolver attaches a generic SUNLINSOL object LS and corre-
sponding template Jacobian SUNMATRIX object J (if applicable) to IDA, initializing the
IDALS linear solver interface.

Arguments idamem (void *) pointer to the IDA memory block.

LS (SUNLinearSolver) SUNLINSOL object to use for solving linear systems of the
form (2.4.
J (SUNMatrix) SUNMATRIX object for used as a template for the Jacobian (or

NULL if not applicable).
Return value The return value flag (of type int) is one of
IDALS_SUCCESS The IDALS initialization was successful.
IDALS_MEM_NULL The ida mem pointer is NULL.

IDALS_ILL_INPUT The IDALS interface is not compatible with the LS or J input objects
or is incompatible with the current NVECTOR module.

40 Using IDA for C Applications

IDALS_SUNLS_FAIL A call to the LS object failed.
IDALS_ MEM FAIL A memory allocation request failed.

Notes If LS is a matrix-based linear solver, then the template Jacobian matrix J will be used
in the solve process, so if additional storage is required within the SUNMATRIX object
(e.g., for factorization of a banded matrix), ensure that the input object is allocated
with sufficient size (see the documentation of the particular SUNMATRIX type in Chapter
8 for further information).

The previous routines IDADlsSetLinearSolver and IDASpilsSetLinearSolver are
now wrappers for this routine, and may still be used for backward-compatibility. How-
ever, these will be deprecated in future releases, so we recommend that users transition
to the new routine name soon.

F2003 Name FIDASetLinearSolver

4.5.4 Nonlinear solver interface function

By default DA uses the SUNNONLINSOL implementation of Newton’s method defined by the SUNNON-
LINSOL_NEWTON module (see §10.3). To specify a different nonlinear solver in IDA, the user’s program
must create a SUNNONLINSOL object by calling the appropriate constructor routine. The user must
then attach the SUNNONLINSOL object to IDA by calling IDASetNonlinearSolver, as documented
below.

When changing the nonlinear solver in IDA, IDASetNonlinearSolver must be called after IDAInit.
If any calls to IDASolve have been made, then IDA will need to be reinitialized by calling IDAReInit
to ensure that the nonlinear solver is initialized correctly before any subsequent calls to IDASolve.

The first argument passed to the routine IDASetNonlinearSolver is the IDA memory pointer
returned by IDACreate and the second argument is the SUNNONLINSOL object to use for solving the
nonlinear system 2.3. A call to this function attaches the nonlinear solver to the main IDA integrator.
We note that at present, the SUNNONLINSOL object must be of type SUNNONLINEARSOLVER _ROOTFIND.

’IDASetNonlinearSolver
Call flag = IDASetNonlinearSolver(ida_mem, NLS);

Description The function IDASetNonLinearSolver attaches a SUNNONLINSOL object (NLS) to IDA.

Arguments idamem (void *) pointer to the IDA memory block.

NLS (SUNNonlinearSolver) SUNNONLINSOL object to use for solving nonlinear sys-
tems.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The nonlinear solver was successfully attached.

IDA_MEM NULL The ida_mem pointer is NULL.

IDA_ILL_INPUT The SUNNONLINSOL object is NULL, does not implement the required
nonlinear solver operations, is not of the correct type, or the residual

function, convergence test function, or maximum number of nonlinear
iterations could not be set.

F2003 Name FIDASetNonlinearSolver

4.5.5 Initial condition calculation function

IDACalcIC calculates corrected initial conditions for the DAE system for certain index-one problems
including a class of systems of semi-implicit form. (See §2.1 and Ref. [15].) It uses Newton iteration
combined with a linesearch algorithm. Calling IDACalcIC is optional. It is only necessary when
the initial conditions do not satisfy the given system. Thus if yO and ypO are known to satisfy
F(to,y0,90) = 0, then a call to IDACalcIC is generally not necessary.

4.5 User-callable functions

41

A call to the function IDACalcIC must be preceded by successful calls to IDACreate and IDAInit
(or IDAReInit), and by a successful call to the linear system solver specification function. The call to
IDACalcIC should precede the call(s) to IDASolve for the given problem.

IDACalcIC

Call
Description

Arguments

Return value

Notes

F2003 Name

flag = IDACalcIC(ida mem, icopt, toutl);

The function IDACalcIC corrects the initial values yO and ypO at time tO.

idamem (void *) pointer to the IDA memory block.

icopt

(int) is one of the following two options for the initial condition calculation.

icopt=IDA_YA_YDP_INIT directs IDACalcIC to compute the algebraic compo-
nents of y and differential components of 3, given the differential components
of y. This option requires that the N_Vector id was set through IDASetId,
specifying the differential and algebraic components.

icopt=IDA_Y_INIT directs IDACalcIC to compute all components of y, given
y. In this case, id is not required.

toutl

(realtype) is the first value of ¢ at which a solution will be requested (from

IDASolve). This value is needed here only to determine the direction of inte-
gration and rough scale in the independent variable ¢.

The return value flag (of type int) will be one of the following:

IDA_SUCCESS
IDA_MEM_NULL
IDA_NO_MALLOC
IDA_ILL_INPUT
IDA_LSETUP_FAIL

IDA_LINIT_FAIL
IDA_LSOLVE_FAIL

IDA_BAD_EWT

IDA_FIRST_RES_FAIL

IDA_RES_FAIL

IDA_NO_RECOVERY

IDA_CONSTR_FAIL

IDA_LINESEARCH_FAIL

IDA_CONV_FAIL

IDASolve succeeded.

The argument ida mem was NULL.

The allocation function IDAInit has not been called.
One of the input arguments was illegal.

The linear solver’s setup function failed in an unrecoverable man-
ner.

The linear solver’s initialization function failed.

The linear solver’s solve function failed in an unrecoverable man-
ner.

Some component of the error weight vector is zero (illegal), either
for the input value of yO or a corrected value.

The user’s residual function returned a recoverable error flag on
the first call, but IDACalcIC was unable to recover.

The user’s residual function returned a nonrecoverable error flag.
The user’s residual function, or the linear solver’s setup or solve
function had a recoverable error, but IDACalcIC was unable to
recover.

IDACalcIC was unable to find a solution satisfying the inequality
constraints.

The linesearch algorithm failed to find a solution with a step
larger than steptol in weighted RMS norm, and within the
allowed number of backtracks.

IDACalcIC failed to get convergence of the Newton iterations.

All failure return values are negative and therefore a test flag < 0 will trap all

IDACalcIC failures.

Note that IDACalcIC will correct the values of y(tg) and §(tg) which were specified

in the previous call to IDAInit or IDAReInit.

To obtain the corrected values, call

IDAGetconsistentIC (see §4.5.10.3).

FIDACalcIC

42 Using IDA for C Applications

4.5.6 Rootfinding initialization function

While integrating the IVP, IDA has the capability of finding the roots of a set of user-defined functions.
To activate the rootfinding algorithm, call the following function. This is normally called only once,
prior to the first call to IDASolve, but if the rootfinding problem is to be changed during the solution,
IDARootInit can also be called prior to a continuation call to IDASolve.

IDARootInit

Call flag = IDARootInit(ida_mem, nrtfn, g);
Description The function IDARootInit specifies that the roots of a set of functions g;(t,y,) are to
be found while the IVP is being solved.
Arguments idamem (void *) pointer to the IDA memory block returned by IDACreate.
nrtfn (int) is the number of root functions g;.
g (IDARootFn) is the C function which defines the nrtfn functions g;(t,y,9)
whose roots are sought. See §4.6.4 for details.
Return value The return value flag (of type int) is one of
IDA_SUCCESS The call to IDARootInit was successful.
IDA MEM NULL The ida mem argument was NULL.
IDA_MEM_FAIL A memory allocation failed.
IDA_ILL_INPUT The function g is NULL, but nrtfn> 0.
Notes If a new IVP is to be solved with a call to IDAReInit, where the new IVP has no
rootfinding problem but the prior one did, then call IDARootInit with nrtfn= 0.

F2003 Name FIDARootInit

4.5.7 IDA solver function

This is the central step in the solution process, the call to perform the integration of the DAE. One
of the input arguments (itask) specifies one of two modes as to where IDA is to return a solution.
But these modes are modified if the user has set a stop time (with IDASetStopTime) or requested
rootfinding.

Call flag = IDASolve(ida_mem, tout, &tret, yret, ypret, itask);
Description The function IDASolve integrates the DAE over an interval in ¢.

Arguments idamem (void *) pointer to the IDA memory block.

tout (realtype) the next time at which a computed solution is desired.
tret (realtype) the time reached by the solver (output).

yret (N_Vector) the computed solution vector .

ypret (N_Vector) the computed solution vector .

itask (int) a flag indicating the job of the solver for the next user step. The
IDA_NORMAL task is to have the solver take internal steps until it has reached or
just passed the user specified tout parameter. The solver then interpolates in
order to return approximate values of y(tout) and g(tout). The IDA_ONE_STEP
option tells the solver to just take one internal step and return the solution at
the point reached by that step.

Return value IDASolve returns vectors yret and ypret and a corresponding independent variable
value t = tret, such that (yret, ypret) are the computed values of (y(t), y(t)).

In IDA_NORMAL mode with no errors, tret will be equal to tout and yret = y(tout),
ypret = y(tout).

The return value flag (of type int) will be one of the following:

4.5 User-callable functions 43

Notes

IDA_SUCCESS IDASolve succeeded.

IDA_TSTOP_RETURN IDASolve succeeded by reaching the stop point specified through
the optional input function IDASetStopTime. See §4.5.8.1 for more
information.

IDA_ROOT_RETURN IDASolve succeeded and found one or more roots. In this case,
tret is the location of the root. If nrtfn > 1, call IDAGetRootInfo
to see which g; were found to have a root. See §4.5.10.4 for more

information.
IDA_MEM_NULL The ida_mem argument was NULL.
IDA_ILL_INPUT One of the inputs to IDASolve was illegal, or some other input

to the solver was either illegal or missing. The latter category
includes the following situations: (a) The tolerances have not been
set. (b) A component of the error weight vector became zero during
internal time-stepping. (¢) The linear solver initialization function
(called by the user after calling IDACreate) failed to set the linear
solver-specific 1solve field in idamem. (d) A root of one of the
root functions was found both at a point ¢ and also very near ¢. In
any case, the user should see the printed error message for details.

IDA_TOO-MUCH_-WORK The solver took mxstep internal steps but could not reach tout.
The default value for mxstep is MXSTEP_DEFAULT = 500.

IDA_TOO_MUCH_ACC The solver could not satisfy the accuracy demanded by the user for
some internal step.

IDA ERR FAIL Error test failures occurred too many times (MXNEF = 10) during
one internal time step or occurred with || = hpip-
IDA_CONV_FAIL Convergence test failures occurred too many times (MXNCF = 10)

during one internal time step or occurred with |h| = Apip.

IDA_LINIT_FAIL The linear solver’s initialization function failed.

IDA_LSETUP_FAIL The linear solver’s setup function failed in an unrecoverable man-
ner.

IDA_LSOLVE FAIL The linear solver’s solve function failed in an unrecoverable manner.

IDA_CONSTR_FAIL The inequality constraints were violated and the solver was unable
to recover.

IDA REP RES_ERR The user’s residual function repeatedly returned a recoverable error
flag, but the solver was unable to recover.

IDA RES FAIL The user’s residual function returned a nonrecoverable error flag.

IDA_RTFUNC_FAIL The rootfinding function failed.

The vector yret can occupy the same space as the vector yO of initial conditions that
was passed to IDAInit, and the vector ypret can occupy the same space as ypO.

In the IDA_ONE_STEP mode, tout is used on the first call only, and only to get the
direction and rough scale of the independent variable.

If a stop time is enabled (through a call to IDASetStopTime), then IDASolve returns
the solution at tstop. Once the integrator returns at a stop time, any future testing for
tstop is disabled (and can be reenabled only though a new call to IDASetStopTime).

All failure return values are negative and therefore a test f1lag < 0 will trap all IDASolve
failures.

On any error return in which one or more internal steps were taken by IDASolve, the
returned values of tret, yret, and ypret correspond to the farthest point reached in
the integration. On all other error returns, these values are left unchanged from the
previous IDASolve return.

F2003 Name FIDASolve

44 Using IDA for C Applications

4.5.8 Optional input functions

There are numerous optional input parameters that control the behavior of the IDA solver. IDA provides
functions that can be used to change these optional input parameters from their default values. Table
4.2 lists all optional input functions in IDA which are then described in detail in the remainder of this
section. For the most casual use of IDA, the reader can skip to §4.6.

We note that, on an error return, all of the optional input functions also send an error message
to the error handler function. All error return values are negative, so the test flag < 0 will catch all
errors. Finally, a call to a IDASet*** function can be made from the user’s calling program at any
time and, if successful, takes effect immediately.

4.5.8.1 Main solver optional input functions

The calls listed here can be executed in any order. However, if the user’s program calls either
IDASetErrFile or IDASetErrHandlerFn, then that call should appear first, in order to take effect for
any later error message.

| IDASetErrFile
Call flag = IDASetErrFile(idamem, errfp);

Description The function IDASetErrFile specifies the pointer to the file where all IDA messages
should be directed when the default IDA error handler function is used.

Arguments idamem (void *) pointer to the IDA memory block.
errfp (FILE *) pointer to output file.

Return value The return value flag (of type int) is one of
IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes The default value for errfp is stderr.

Passing a value NULL disables all future error message output (except for the case in
which the IDA memory pointer is NULL). This use of IDASetErrFile is strongly discour-
aged.

If IDASetErrFile is to be called, it should be called before any other optional input
functions, in order to take effect for any later error message.

F2003 Name FIDASetErrFile

’IDASetErrHandlean‘
Call flag = IDASetErrHandlerFn(ida mem, ehfun, eh data);

Description The function IDASetErrHandlerFn specifies the optional user-defined function to be
used in handling error messages.

Arguments idamem (void *) pointer to the IDA memory block.
ehfun (IDAErrHandlerFn) is the user’s C error handler function (see §4.6.2).
eh_data (void *) pointer to user data passed to ehfun every time it is called.

Return value The return value flag (of type int) is one of
IDA_SUCCESS The function ehfun and data pointer eh_data have been successfully set.
IDA_MEM NULL The ida_mem pointer is NULL.

Notes Error messages indicating that the IDA solver memory is NULL will always be directed
to stderr.

F2003 Name FIDASetErrHandlerFn

4.5 User-callable functions 45
Table 4.2: Optional inputs for IDA and IDALS
Optional input Function name Default
IDA main solver
Pointer to an error file IDASetErrFile stderr
Error handler function IDASetErrHandlerFn internal fn.
User data IDASetUserData NULL
Maximum order for BDF method IDASetMax0rd 5
Maximum no. of internal steps before ¢,y IDASetMaxNumSteps 500
Initial step size IDASetInitStep estimated
Maximum absolute step size IDASetMaxStep 00
Value of ts¢0p IDASetStopTime 00
Maximum no. of error test failures IDASetMaxErrTestFails 10
Maximum no. of nonlinear iterations IDASetMaxNonlinIters 4
Maximum no. of convergence failures IDASetMaxConvFails 10
Coeff. in the nonlinear convergence test IDASetNonlinConvCoef 0.33
Residual function for nonlinear system evaluations | IDASetNlsResFn NULL
Suppress alg. vars. from error test IDASetSuppressAlg SUNFALSE
Variable types (differential/algebraic) IDASetId NULL
Inequality constraints on solution IDASetConstraints NULL
Direction of zero-crossing IDASetRootDirection both
Disable rootfinding warnings IDASetNoInactiveRootWarn none
IDA initial conditions calculation
Coeff. in the nonlinear convergence test IDASetNonlinConvCoefIC 0.0033
Maximum no. of steps IDASetMaxNumStepsIC 5
Maximum no. of Jacobian/precond. evals. IDASetMaxNumJacsIC 4
Maximum no. of Newton iterations IDASetMaxNumItersIC 10
Max. linesearch backtracks per Newton iter. IDASetMaxBacksIC 100
Turn off linesearch IDASetLineSearchOffIC SUNFALSE
Lower bound on Newton step IDASetStepTolerancelC uround?/3
IDALS linear solver interface

Jacobian function IDASetJacFn DQ
Enable or disable linear solution scaling IDASetLinearSolutionScaling | on
Jacobian-times-vector function IDASetJacTimes NULL, DQ
Preconditioner functions IDASetPreconditioner NULL, NULL
Ratio between linear and nonlinear tolerances IDASetEpsLin 0.05
Increment factor used in DQ Jv approx. IDASetIncrementFactor 1.0
Jacobian-times-vector DQ Res function IDASetJacTimesResFn NULL
Newton linear solve tolerance conversion factor IDASetLSNormFactor vector length

46 Using IDA for C Applications

’IDASetUserData

Call flag = IDASetUserData(ida_mem, user_data);

Description The function IDASetUserData specifies the user data block user_data and attaches it
to the main IDA memory block.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

Notes

F2003 Name

user_data (void *) pointer to the user data.
The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

If specified, the pointer to user_data is passed to all user-supplied functions that have
it as an argument. Otherwise, a NULL pointer is passed.

If user_data is needed in user linear solver or preconditioner functions, the call to
IDASetUserData must be made before the call to specify the linear solver.

FIDASetUserData

IDASetMax0rd

Call
Description

Arguments

Return value

flag = IDASetMax0Ord(ida_mem, maxord);

The function IDASetMax0rd specifies the maximum order of the linear multistep method.
idamem (void *) pointer to the IDA memory block.

maxord (int) value of the maximum method order. This must be positive.

The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida_mem pointer is NULL.

IDA_ILL_INPUT The input value maxord is < 0, or larger than its previous value.

Notes The default value is 5. If the input value exceeds 5, the value 5 will be used. Since
maxord affects the memory requirements for the internal IDA memory block, its value
cannot be increased past its previous value.

F2003 Name FIDASetMaxOrd

IDASetMaxNumSteps

Call flag = IDASetMaxNumSteps(ida_mem, mxsteps);

Description The function IDASetMaxNumSteps specifies the maximum number of steps to be taken
by the solver in its attempt to reach the next output time.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

Notes

F2003 Name

mxsteps (long int) maximum allowed number of steps.
The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA_MEM NULL The ida_mem pointer is NULL.

Passing mxsteps = 0 results in IDA using the default value (500).
Passing mxsteps < 0 disables the test (not recommended).

FIDASetMaxNumSteps

4.5 User-callable functions 47

IDASetInitStep‘

Call
Description

Arguments

Return value

flag = IDASetInitStep(ida_mem, hin);
The function IDASetInitStep specifies the initial step size.

idamem (void *) pointer to the IDA memory block.

hin (realtype) value of the initial step size to be attempted. Pass 0.0 to have IDA
use the default value.

The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes By default, IDA estimates the initial step as the solution of |hy|wrMms = 1/2, with an
added restriction that |h| < .001|tout - tO|.

F2003 Name FIDASetInitStep

IDASetMaXStep‘

Call flag = IDASetMaxStep(ida.mem, hmax);

Description The function IDASetMaxStep specifies the maximum absolute value of the step size.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

hmax (realtype) maximum absolute value of the step size.
The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA_ILL_INPUT Either hmax is not positive or it is smaller than the minimum allowable

step.
Notes Pass hmax= 0 to obtain the default value co.
F2003 Name FIDASetMaxStep
IDASetStopTime
Call flag = IDASetStopTime(ida_mem, tstop);
Description The function IDASetStopTime specifies the value of the independent variable ¢ past
which the solution is not to proceed.
Arguments idamem (void *) pointer to the IDA memory block.

Return value

Notes

F2003 Name

tstop (realtype) value of the independent variable past which the solution should
not proceed.

The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
IDA_TLL_INPUT The value of tstop is not beyond the current ¢ value, t,,.

The default, if this routine is not called, is that no stop time is imposed.

Once the integrator returns at a stop time, any future testing for tstop is disabled (and
can be reenabled only though a new call to IDASetStopTime).

FIDASetStopTime

48 Using IDA for C Applications

’IDASetMaxErrTestFails
Call flag = IDASetMaxErrTestFails(ida_mem, maxnef);

Description The function IDASetMaxErrTestFails specifies the maximum number of error test
failures in attempting one step.

Arguments idamem (void *) pointer to the IDA memory block.
maxnef (int) maximum number of error test failures allowed on one step (> 0).

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA_MEM_NULL The ida_mem pointer is NULL.

Notes The default value is 10.
F2003 Name FIDASetMaxErrTestFails

’IDASetMaxNonlinIters‘

Call flag = IDASetMaxNonlinIters(ida mem, maxcor);

Description The function IDASetMaxNonlinIters specifies the maximum number of nonlinear solver
iterations at one step.

Arguments idamem (void *) pointer to the IDA memory block.
maxcor (int) maximum number of nonlinear solver iterations allowed on one step
(> 0).
Return value The return value flag (of type int) is one of
IDA_SUCCESS The optional value has been successfully set.
IDA_MEM_NULL The ida_mem pointer is NULL.
IDA_MEM FAIL The SUNNONLINSOL module is NULL.
Notes The default value is 4.

F2003 Name FIDASetMaxNonlinIters

| IDASetMaxConvFails]

Call flag = IDASetMaxConvFails(idamem, maxncf);

Description The function IDASetMaxConvFails specifies the maximum number of nonlinear solver
convergence failures at one step.

Arguments idamem (void *) pointer to the IDA memory block.

maxncf (int) maximum number of allowable nonlinear solver convergence failures on
one step (> 0).

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA_MEM_NULL The ida_mem pointer is NULL.

Notes The default value is 10.
F2003 Name FIDASetMaxConvFails

’IDASetNonlinConvCoef‘
Call flag = IDASetNonlinConvCoef (ida mem, nlscoef);

Description The function IDASetNonlinConvCoef specifies the safety factor in the nonlinear con-
vergence test; see Chapter 2, Eq. (2.7).

Arguments idamem (void *) pointer to the IDA memory block.

4.5 User-callable functions 49

nlscoef (realtype) coefficient in nonlinear convergence test (> 0.0).
Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA_MEM_NULL The ida_mem pointer is NULL.
IDA_ILL_INPUT The value of nlscoef is <= 0.0.

Notes The default value is 0.33.
F2003 Name FIDASetNonlinConvCoef

| IDASetN1sResFn
Call flag = IDASetNlsResFn(ida_mem, res);

Description The function IDASetN1sResFn specifies an alternative residual function for use in non-
linear system function evaluations.

Arguments idamem (void *) pointer to the IDA memory block.

res (IDAResFn) is the alternative C function which computes the DAE residual
function F (for full details see §4.6.1).

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional function has been successfully set.
IDA_MEM NULL The ida_mem pointer is NULL.

Notes The default is to use the residual function provided to IDAInit in nonlinear system
function evaluations. If the input residual function is NULL, the default is used.

When using a non-default nonlinear solver, this function must be called after IDASetNonlinearSolver.

F2003 Name FIDASetNlsResFn

IDASetSuppressAlg

Call flag = IDASetSuppressAlg(ida_mem, suppressalg);

Description The function IDASetSuppressAlg indicates whether or not to suppress algebraic vari-
ables in the local error test.

Arguments ida_mem (void *) pointer to the IDA memory block.

suppressalg (booleantype) indicates whether to suppress (SUNTRUE) or not (SUNFALSE)
the algebraic variables in the local error test.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes The default value is SUNFALSE.

If suppressalg=SUNTRUE is selected, then the id vector must be set (through IDASetId)
to specify the algebraic components.

In general, the use of this option (with suppressalg = SUNTRUE) is discouraged when
solving DAE systems of index 1, whereas it is generally encouraged for systems of index
2 or more. See pp. 146-147 of Ref. [11] for more on this issue.

F2003 Name FIDASetSuppressAlg

50 Using IDA for C Applications

Call flag = IDASetId(idamem, id);
Description The function IDASetId specifies algebraic/differential components in the y vector.

Arguments idamem (void *) pointer to the IDA memory block.
id (N_Vector) state vector. A value of 1.0 indicates a differential variable, while
0.0 indicates an algebraic variable.
Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes The vector id is required if the algebraic variables are to be suppressed from the lo-
cal error test (see IDASetSuppressAlg) or if IDACalcIC is to be called with icopt =
IDA_YA_YDP_INIT (see §4.5.5).

F2003 Name FIDASetId

’IDASetConstraints

Call flag = IDASetConstraints(ida_mem, constraints);

Description The function IDASetConstraints specifies a vector defining inequality constraints for
each component of the solution vector y.
Arguments idamem (void *) pointer to the IDA memory block.

constraints (N_Vector) vector of constraint flags. If constraints[i] is

0.0 then no constraint is imposed on y;.

1.0 then y; will be constrained to be y; > 0.0.
—1.0 then y; will be constrained to be y; < 0.0.

2.0 then y; will be constrained to be y; > 0.0.
—2.0 then y; will be constrained to be y; < 0.0.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
IDA_ILL_INPUT The constraints vector contains illegal values.

Notes The presence of a non-NULL constraints vector that is not 0.0 in all components will
cause constraint checking to be performed. However, a call with 0.0 in all components
of constraints will result in an illegal input return.

F2003 Name FIDASetConstraints

4.5.8.2 Linear solver interface optional input functions

The mathematical explanation of the linear solver methods available to IDA is provided in §2.1. We
group the user-callable routines into four categories: general routines concerning the overall IDALS
linear solver interface, optional inputs for matrix-based linear solvers, optional inputs for matrix-free
linear solvers, and optional inputs for iterative linear solvers. We note that the matrix-based and
matrix-free groups are mutually exclusive, whereas the “iterative” tag can apply to either case.
When using matrix-based linear solver modules, the IDALS solver interface needs a function to com-
pute an approximation to the Jacobian matrix J(¢,y,y). This function must be of type IDALsJacFn.
The user can supply a Jacobian function, or if using a dense or banded matrix J can use the de-
fault internal difference quotient approximation that comes with the IDALS interface. To specify a
user-supplied Jacobian function jac, IDALS provides the function IDASetJacFn. The IDALS interface
passes the pointer user_data to the Jacobian function. This allows the user to create an arbitrary

4.5 User-callable functions 51

structure with relevant problem data and access it during the execution of the user-supplied Jacobian
function, without using global data in the program. The pointer user_data may be specified through
IDASetUserData.

IDASetJacFn

Call flag = IDASetJacFn(ida mem, jac);

Description The function IDASetJacFn specifies the Jacobian approximation function to be used for
a matrix-based solver within the IDALS interface.

Arguments idamem (void *) pointer to the IDA memory block.
jac (IDALsJacFn) user-defined Jacobian approximation function.

Return value The return value flag (of type int) is one of

IDALS_SUCCESS The optional value has been successfully set.
IDALS_MEM NULL The ida mem pointer is NULL.
IDALS_LMEM NULL The IDALS linear solver interface has not been initialized.

Notes This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolver.

By default, IDALS uses an internal difference quotient function for dense and band
matrices. If NULL is passed to jac, this default function is used. An error will occur if
no jac is supplied when using other matrix types.

The function type IDALsJacFn is described in §4.6.5.

The previous routine IDAD1sSetJacFn is now a wrapper for this routine, and may still
be used for backward-compatibility. However, this will be deprecated in future releases,
so we recommend that users transition to the new routine name soon.

F2003 Name FIDASetJacFn

When using a matrix-based linear solver the matrix information will be updated infrequently to reduce
matrix construction and, with direct solvers, factorization costs. As a result the value of o may not
be current and a scaling factor is applied to the solution of the linear system to account for the lagged
value of a. See §9.4.1 for more details. The function IDASetLinearSolutionScaling can be used
to disable this scaling when necessary, e.g., when providing a custom linear solver that updates the
matrix using the current « as part of the solve.

IDASetLinearSolutionScaling

Call flag = IDASetLinearSolutionScaling(ida mem, onoff);

Description The function IDASetLinearSolutionScaling enables or disables scaling the linear sys-
tem solution to account for a change in « in the linear system. For more details see
§9.4.1.
Arguments idamem (void *) pointer to the IDA memory block.
onoff (booleantype) flag to enable (SUNTRUE) or disable (SUNFALSE) scaling
Return value The return value flag (of type int) is one of
IDALS_SUCCESS The flag value has been successfully set.
IDALS MEM NULL The ida_mem pointer is NULL.
IDALS_LMEM NULL The IDALS linear solver interface has not been initialized.
IDALS_ILL_INPUT The attached linear solver is not matrix-based.

Notes This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolver.

By default scaling is enabled with matrix-based linear solvers.

52 Using IDA for C Applications

F2003 Name FIDASetLinearSolutionScaling

When using matrix-free linear solver modules, the IDALS solver interface requires a function to compute
an approximation to the product between the Jacobian matrix J(t,y) and a vector v. The user can
supply a Jacobian-times-vector approximation function, or use the default internal difference quotient
function that comes with the IDALS solver interface.

A user-defined Jacobian-vector function must be of type IDALsJacTimesVecFn and can be specified
through a call to IDASetJacTimes (see §4.6.6 for specification details). The evaluation and processing
of any Jacobian-related data needed by the user’s Jacobian-times-vector function may be done in the
optional user-supplied function jtsetup (see §4.6.7 for specification details). The pointer user_data
received through IDASetUserData (or a pointer to NULL if user_data was not specified) is passed
to the Jacobian-times-vector setup and product functions, jtsetup and jtimes, each time they are
called. This allows the user to create an arbitrary structure with relevant problem data and access it
during the execution of the user-supplied functions without using global data in the program.

’IDASetJacTimes‘

Call flag = IDASetJacTimes(ida mem, jsetup, jtimes);

Description The function IDASetJacTimes specifies the Jacobian-vector setup and product func-
tions.
Arguments idamem (void *) pointer to the IDA memory block.
jtsetup (IDALsJacTimesSetupFn) user-defined function to set up the Jacobian-vector
product. Pass NULL if no setup is necessary.

jtimes (IDALsJacTimesVecFn) user-defined Jacobian-vector product function.
Return value The return value flag (of type int) is one of
IDALS_SUCCESS The optional value has been successfully set.
IDALS_MEM_NULL The ida_mem pointer is NULL.
IDALS_LMEM NULL The IDALS linear solver has not been initialized.
IDALS_SUNLS_FAIL An error occurred when setting up the system matrix-times-vector
routines in the SUNLINSOL object used by the IDALS interface.

Notes The default is to use an internal finite difference quotient for jtimes and to omit
jtsetup. If NULL is passed to jtimes, these defaults are used. A user may specify
non-NULL jtimes and NULL jtsetup inputs.

This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolver.

The function type IDALsJacTimesSetupFn is described in §4.6.7.
The function type IDALsJacTimesVecFn is described in §4.6.6.

The previous routine IDASpilsSetJacTimes is now a wrapper for this routine, and may
still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDASetJacTimes

When using the default difference-quotient approximation to the Jacobian-vector product, the user
may specify the factor to use in setting increments for the finite-difference approximation, via a call
to IDASetIncrementFactor.

’IDASetIncrementFactor

Call flag = IDASetIncrementFactor(ida_mem, dgincfac);

Description The function IDASetIncrementFactor specifies the increment factor to be used in the
difference-quotient approximation to the product Jv. Specifically, Jv is approximated
via the formula

JU = [F(t, ﬂ,ﬂ/) - F(tayay/)])

SHE

4.5 User-callable functions 53

where § =y + ov, §' =y + ¢jov, ¢; is a BDF parameter proportional to the step size,
o = v N dqgincfac, and N is the number of equations in the DAE system.

Arguments idamem (void *) pointer to the IDA memory block.
dgincfac (realtype) user-specified increment factor (positive).

Return value The return value flag (of type int) is one of

IDALS_SUCCESS The optional value has been successfully set.
IDALS_MEM_NULL The ida_mem pointer is NULL.

IDALS_LMEM NULL The IDALS linear solver has not been initialized.
IDALS_ILL_INPUT The specified value of dgincfac is < 0.

Notes The default value is 1.0.

This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolver.

The previous routine IDASpilsSetIncrementFactor is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDASetIncrementFactor

Additionally, when using the internal difference quotient, the user may also optionally supply an alter-

native residual function for use in the Jacobian-vector product approximation by calling IDASetJacTimesResFn.
The alternative residual function should compute a suitable (and differentiable) approximation to the
residual function provided to IDAInit. For example, as done in [26] for an ODE in explicit form,

the alternative function may use lagged values when evaluating a nonlinearity to avoid differencing a
potentially non-differentiable factor.

’IDASetJacTimesRean‘
Call flag = IDASetJacTimesResFn(ida_mem, jtimesResFn);

Description The function IDASetJacTimesResFn specifies an alternative DAE residual function for
use in the internal Jacobian-vector product difference quotient approximation.
Arguments ida_mem (void *) pointer to the IDA memory block.

jtimesResFn (IDAResFn) is the C function which computes the alternative DAE resid-
ual function to use in Jacobian-vector product difference quotient ap-
proximations. This function has the form res(t, yy, yp, resval,
user_data). For full details see §4.6.1.

Return value The return value flag (of type int) is one of

IDALS_SUCCESS The optional value has been successfully set.
IDALS MEM NULL The ida_mem pointer is NULL.

IDALS_LMEM NULL The IDALS linear solver has not been initialized.
IDALS_ILL_INPUT The internal difference quotient approximation is disabled.

Notes The default is to use the residual function provided to IDAInit in the internal difference
quotient. If the input resudual function is NULL, the default is used.

This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolver.

F2003 Name FIDASetJacTimesResFn

When using an iterative linear solver, the user may supply a preconditioning operator to aid in
solution of the system. This operator consists of two user-supplied functions, psetup and psolve,
that are supplied to IDA using the function IDASetPreconditioner. The psetup function supplied
to this routine should handle evaluation and preprocessing of any Jacobian data needed by the user’s
preconditioner solve function, psolve. Both of these functions are fully specified in §4.6. The user

54 Using IDA for C Applications

data pointer received through IDASetUserData (or a pointer to NULL if user data was not specified) is
passed to the psetup and psolve functions. This allows the user to create an arbitrary structure with
relevant problem data and access it during the execution of the user-supplied preconditioner functions
without using global data in the program.

Also, as described in §2.1, the IDALS interface requires that iterative linear solvers stop when the
norm of the preconditioned residual satisfies

€1 €

r|| < —
Il < &
where € is the nonlinear solver tolerance, and the default e, = 0.05; this value may be modified by
the user through the IDASetEpsLin function.

’IDASetPreconditioner‘

Call flag = IDASetPreconditioner(ida_mem, psetup, psolve);

Description The function IDASetPreconditioner specifies the preconditioner setup and solve func-
tions.
Arguments idamem (void *) pointer to the IDA memory block.

psetup (IDALsPrecSetupFn) user-defined function to set up the preconditioner. Pass
NULL if no setup is necessary.

psolve (IDALsPrecSolveFn) user-defined preconditioner solve function.
Return value The return value flag (of type int) is one of

IDALS_SUCCESS The optional values have been successfully set.

IDALS MEM_NULL The ida_mem pointer is NULL.

IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

IDALS_SUNLS_FAIL An error occurred when setting up preconditioning in the SUNLINSOL
object used by the IDALS interface.

Notes The default is NULL for both arguments (i.e., no preconditioning).

This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolver.

The function type IDALsPrecSolveFn is described in §4.6.8.
The function type IDALsPrecSetupFn is described in §4.6.9.

The previous routine IDASpilsSetPreconditioner is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDASetPreconditioner

IDASetEpsLin

Call flag = IDASetEpsLin(ida_mem, eplifac);

Description The function IDASetEpsLin specifies the factor by which the Krylov linear solver’s
convergence test constant is reduced from the nonlinear iteration test constant.
Arguments idamem (void *) pointer to the IDA memory block.
eplifac (realtype) linear convergence safety factor (> 0.0).
Return value The return value flag (of type int) is one of
IDALS_SUCCESS The optional value has been successfully set.
IDALS MEM NULL The ida_mem pointer is NULL.
IDALS_LMEM NULL The IDALS linear solver has not been initialized.
IDALS_ILL_INPUT The factor eplifac is negative.

4.5 User-callable functions 55

Notes

F2003 Name

The default value is 0.05.

This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolver.

If eplifac= 0.0 is passed, the default value is used.

The previous routine IDASpilsSetEpsLin is now a wrapper for this routine, and may
still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

FIDASetEpsLin

’IDASetLSNormFactor

Call

Description

Arguments

Return value

Notes

F2003 Name

flag = IDASetLSNormFactor(ida mem, nrmfac);

The function IDASetLSNormFactor specifies the factor to use when converting from the
integrator tolerance (WRMS norm) to the linear solver tolerance (L2 norm) for Newton
linear system solves e.g., tol L2 = fac * tol_WRMS.

idamem (void *) pointer to the IDA memory block.

nrmfac (realtype) the norm conversion factor. If nrmfac is:

> 0 then the provided value is used.
= (0 then the conversion factor is computed using the vector length i.e., nrmfac
= N_VGetLength(y) (default).
< 0 then the conversion factor is computed using the vector dot product nrmfac
= N_VDotProd(v,v) where all the entries of v are one.
The return value flag (of type int) is one of
IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

This function must be called after the IDALS linear solver interface has been initialized
through a call to IDASetLinearSolver.

Prior to the introduction of N_VGetLength in SUNDIALS v5.0.0 (IDA v5.0.0) the value of
nrmfac was computed using the vector dot product i.e., the nrmfac < 0 case.

FIDASetLSNormFactor

4.5.8.3 Initial condition calculation optional input functions

The following functions can be called just prior to calling IDACalcIC to set optional inputs controlling
the initial condition calculation.

’IDASetNonlinConvCoefIC‘

Call

Description

Arguments

Return value

flag = IDASetNonlinConvCoefIC(idamem, epiccon);

The function IDASetNonlinConvCoefIC specifies the positive constant in the Newton
iteration convergence test within the initial condition calculation.
ida mem (void *) pointer to the IDA memory block.

epiccon (realtype) coefficient in the Newton convergence test (> 0).
The return value flag (of type int) is one of
IDA_SUCCESS The optional value has been successfully set.

IDA_MEM NULL The ida_mem pointer is NULL.
IDA_ILL_INPUT The epiccon factor is <= 0.0.

56

Using IDA for C Applications

Notes The default value is 0.01 - 0.33.
This test uses a weighted RMS norm (with weights defined by the tolerances). For
new initial value vectors y and 9 to be accepted, the norm of J 1 F(tg,y,) must be <
epiccon, where J is the system Jacobian.

F2003 Name FIDASetNonlinConvCoefIC

IDASetMaxNumStepsIC

Call flag = IDASetMaxNumStepsIC(ida_mem, maxnh);

Description The function IDASetMaxNumStepsIC specifies the maximum number of steps allowed
when icopt=IDA_YA_YDP_INIT in IDACalcIC, where h appears in the system Jacobian,
J =0F/dy+ (1/h)0F/0y.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

maxnh (int) maximum allowed number of values for h.
The return value flag (of type int) is one of
IDA_SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.
IDA_ILL_INPUT maxnh is non-positive.

Notes The default value is 5.

F2003 Name FIDASetMaxNumStepsIC

| IDASetMaxNumJacsIC |

Call flag = IDASetMaxNumJacsIC(ida mem, maxnj) ;

Description The function IDASetMaxNumJacsIC specifies the maximum number of the approximate
Jacobian or preconditioner evaluations allowed when the Newton iteration appears to
be slowly converging.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

maxnj (int) maximum allowed number of Jacobian or preconditioner evaluations.
The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDAMEM NULL The ida_mem pointer is NULL.
IDA_ILL_INPUT maxnj is non-positive.

Notes The default value is 4.

F2003 Name FIDASetMaxNumJacsIC

| IDASetMaxNumItersIC|

Call flag = IDASetMaxNumItersIC(ida mem, maxnit);

Description The function IDASetMaxNumItersIC specifies the maximum number of Newton itera-
tions allowed in any one attempt to solve the initial conditions calculation problem.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

maxnit (int) maximum number of Newton iterations.

The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.
IDA_TLL_INPUT maxnit is non-positive.

4.5 User-callable functions 57

Notes The default value is 10.

F2003 Name FIDASetMaxNumItersIC

| IDASetMaxBacksIC |

Call flag = IDASetMaxBacksIC(ida-mem, maxbacks);

Description The function IDASetMaxBacksIC specifies the maximum number of linesearch back-
tracks allowed in any Newton iteration, when solving the initial conditions calculation
problem.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

Notes
F2003 Name

maxbacks (int) maximum number of linesearch backtracks per Newton step.
The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA_MEM NULL The ida_mem pointer is NULL.
IDA_TILL_INPUT maxbacks is non-positive.

The default value is 100.
FIDASetMaxBacksIC

| IDASetLineSearchOf£IC|

Call

Description

Arguments

Return value

flag = IDASetLineSearchOffIC(ida mem, lsoff);

The function IDASetLineSearch0OffIC specifies whether to turn on or off the linesearch
algorithm.

idamem (void *) pointer to the IDA memory block.

lsoff (booleantype) a flag to turn off (SUNTRUE) or keep (SUNFALSE) the linesearch
algorithm.

The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes The default value is SUNFALSE.

F2003 Name FIDASetLineSearchQffIC

IDASetStepTolerancelIC

Call flag = IDASetStepToleranceIC(ida_mem, steptol);

Description The function IDASetStepToleranceIC specifies a positive lower bound on the Newton
step.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

Notes
F2003 Name

steptol (int) Minimum allowed WRMS-norm of the Newton step (> 0.0).
The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida mem pointer is NULL.

IDA_ILL_INPUT The steptol tolerance is <= 0.0.

The default value is (unit roundoff)?/3.

FIDASetStepTolerancelC

58 Using IDA for C Applications

4.5.8.4 Rootfinding optional input functions

The following functions can be called to set optional inputs to control the rootfinding algorithm.

’ IDASetRootDirection

Call flag = IDASetRootDirection(ida mem, rootdir);

Description The function IDASetRootDirection specifies the direction of zero-crossings to be lo-
cated and returned to the user.
Arguments idamem (void *) pointer to the IDA memory block.

rootdir (int *) state array of length nrtfn, the number of root functions g;, as spec-
ified in the call to the function IDARootInit. A value of 0 for rootdir[i]
indicates that crossing in either direction should be reported for g;. A value
of +1 or —1 indicates that the solver should report only zero-crossings where
g; is increasing or decreasing, respectively.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional value has been successfully set.

IDA MEM NULL The ida_mem pointer is NULL.

IDA_ILL_INPUT rootfinding has not been activated through a call to IDARootInit.
Notes The default behavior is to locate both zero-crossing directions.

F2003 Name FIDASetRootDirection

’IDASetNoInactiveRootWarn

Call flag = IDASetNoInactiveRootWarn(ida_mem) ;

Description The function IDASetNoInactiveRootWarn disables issuing a warning if some root func-
tion appears to be identically zero at the beginning of the integration.

Arguments idamem (void *) pointer to the IDA memory block.
Return value The return value flag (of type int) is one of
IDA_SUCCESS The optional value has been successfully set.
IDA_MEM_NULL The ida_mem pointer is NULL.

Notes DA will not report the initial conditions as a possible zero-crossing (assuming that one
or more components g; are zero at the initial time). However, if it appears that some g;
is identically zero at the initial time (i.e., g; is zero at the initial time and after the first
step), IDA will issue a warning which can be disabled with this optional input function.

F2003 Name FIDASetNoInactiveRootWarn

4.5.9 Interpolated output function

An optional function IDAGetDKky is available to obtain additional output values. This function must be

called after a successful return from IDASolve and provides interpolated values of y or its derivatives

of order up to the last internal order used for any value of ¢ in the last internal step taken by IDA.
The call to the IDAGetDky function has the following form:

IDAGetDky

Call flag = IDAGetDky(idamem, t, k, dky);

Description The function IDAGetDky computes the interpolated values of the k' derivative of y for
any value of ¢ in the last internal step taken by IDA. The value of £ must be non-negative
and smaller than the last internal order used. A value of 0 for k means that the y is

4.5 User-callable functions 59

interpolated. The value of t must satisfy t,, — h,, < t < t,, where t,, denotes the current
internal time reached, and h,, is the last internal step size used successfully.

Arguments idamem (void *) pointer to the IDA memory block.

t (realtype) time at which to interpolate.
k (int) integer specifying the order of the derivative of y wanted.
dky (N_Vector) vector containing the interpolated k" derivative of y(t).

Return value The return value flag (of type int) is one of

IDA_SUCCESS IDAGetDky succeeded.
IDA_MEM_NULL The ida_mem argument was NULL.
IDA_BAD_T t is not in the interval [t, — hy, t,].
IDA_BAD K k is not one of {0, 1, ..., klast}.
IDA BAD DKY dky is NULL.

Notes It is only legal to call the function IDAGetDky after a successful return from IDASolve.
Functions IDAGetCurrentTime, IDAGetLastStep and IDAGetLastOrder (see §4.5.10.2)
can be used to access t,, h, and klast.

F2003 Name FIDAGetDky

4.5.10 Optional output functions

IDA provides an extensive list of functions that can be used to obtain solver performance information.
Table 4.3 lists all optional output functions in IDA, which are then described in detail in the remainder
of this section.

Some of the optional outputs, especially the various counters, can be very useful in determining
how successful the IDA solver is in doing its job. For example, the counters nsteps and nrevals
provide a rough measure of the overall cost of a given run, and can be compared among runs with
differing input options to suggest which set of options is most efficient. The ratio nniters/nsteps
measures the performance of the nonlinear solver in solving the nonlinear systems at each time step;
typical values for this range from 1.1 to 1.8. The ratio njevals/nniters (in the case of a matrix-
based linear solver), and the ratio npevals/nniters (in the case of an iterative linear solver) measure
the overall degree of nonlinearity in these systems, and also the quality of the approximate Jacobian
or preconditioner being used. Thus, for example, njevals/nniters can indicate if a user-supplied
Jacobian is inaccurate, if this ratio is larger than for the case of the corresponding internal Jacobian.
The ratio nliters/nniters measures the performance of the Krylov iterative linear solver, and thus
(indirectly) the quality of the preconditioner.

4.5.10.1 SUNDIALS version information

The following functions provide a way to get SUNDIALS version information at runtime.

’ SUNDIALSGetVersion ‘
Call flag = SUNDIALSGetVersion(version, len);

Description The function SUNDIALSGetVersion fills a character array with SUNDIALS version infor-
mation.

Arguments version (char *) character array to hold the SUNDIALS version information.
len (int) allocated length of the version character array.

Return value If successful, SUNDIALSGetVersion returns 0 and version contains the SUNDIALS ver-

sion information. Otherwise, it returns —1 and version is not set (the input character
array is too short).

Using IDA for C Applications

Table 4.3: Optional outputs from IDA and IDALS

Optional output

Function name

IDA main solver

Size of IDA real and integer workspace IDAGetWorkSpace
Cumulative number of internal steps IDAGetNumSteps

No. of calls to residual function IDAGetNumResEvals

No. of calls to linear solver setup function IDAGetNumLinSolvSetups
No. of local error test failures that have occurred IDAGetNumErrTestFails
Order used during the last step IDAGetLastOrder

Order to be attempted on the next step IDAGetCurrentOrder
Order reductions due to stability limit detection IDAGetNumStabLimOrderReds
Actual initial step size used IDAGetActualInitStep
Step size used for the last step IDAGetLastStep

Step size to be attempted on the next step IDAGetCurrentStep
Current internal time reached by the solver IDAGetCurrentTime
Suggested factor for tolerance scaling IDAGetTolScaleFactor
Error weight vector for state variables IDAGetErrWeights
Estimated local errors IDAGetEstLocalErrors

No. of nonlinear solver iterations
No. of nonlinear convergence failures

IDAGetNumNonlinSolvIters

IDAGetNumNonlinSolvConvFails

Array showing roots found IDAGetRootInfo
No. of calls to user root function IDAGetNumGEvals
Name of constant associated with a return flag IDAGetReturnFlagName

IDA initial conditions calculation

Number of backtrack operations
Corrected initial conditions

IDAGetNumBacktrackops
IDAGetConsistentIC

IDALS linear solver interface

Size of real and integer workspace IDAGetLinWorkSpace
No. of Jacobian evaluations IDAGetNumJacEvals

No. of residual calls for finite diff. Jacobian[-vector] evals. | IDAGetNumLinResEvals
No. of linear iterations IDAGetNumLinIters

No. of linear convergence failures IDAGetNumLinConvFails
No. of preconditioner evaluations IDAGetNumPrecEvals
No. of preconditioner solves IDAGetNumPrecSolves
No. of Jacobian-vector setup evaluations IDAGetNumJTSetupEvals
No. of Jacobian-vector product evaluations IDAGetNumJtimesEvals
Last return from a linear solver function IDAGetLastLinFlag

Name of constant associated with a return flag

IDAGetLinReturnFlagName

4.5 User-callable functions 61

Notes A string of 25 characters should be sufficient to hold the version information. Any
trailing characters in the version array are removed.

’ SUNDIALSGetVersionNumber
Call flag = SUNDIALSGetVersionNumber (&major, &minor, &patch, label, len);

Description The function SUNDIALSGetVersionNumber set integers for the SUNDIALS major, minor,
and patch release numbers and fills a character array with the release label if applicable.

Arguments major (int) SUNDIALS release major version number.
minor (int) SUNDIALS release minor version number.
patch (int) SUNDIALS release patch version number.
label (char *) character array to hold the SUNDIALS release label.
len (int) allocated length of the label character array.

Return value If successful, SUNDIALSGetVersionNumber returns 0 and the major, minor, patch, and
label values are set. Otherwise, it returns —1 and the values are not set (the input
character array is too short).

Notes A string of 10 characters should be sufficient to hold the label information. If a label
is not used in the release version, no information is copied to label. Any trailing
characters in the label array are removed.

4.5.10.2 Main solver optional output functions

IDA provides several user-callable functions that can be used to obtain different quantities that may
be of interest to the user, such as solver workspace requirements, solver performance statistics, as well
as additional data from the IDA memory block (a suggested tolerance scaling factor, the error weight
vector, and the vector of estimated local errors). Also provided are functions to extract statistics
related to the performance of the SUNNONLINSOL nonlinear solver being used. As a convenience, ad-
ditional extraction functions provide the optional outputs in groups. These optional output functions
are described next.

IDAGetWorkSpace‘

Call flag = IDAGetWorkSpace(idamem, &lenrw, &leniw);
Description The function IDAGetWorkSpace returns the IDA real and integer workspace sizes.

Arguments idamem (void *) pointer to the IDA memory block.
lenrw (long int) number of real values in the IDA workspace.

leniw (long int) number of integer values in the IDA workspace.
Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes In terms of the problem size N, the maximum method order maxord, and the number
nrtfn of root functions (see §4.5.6), the actual size of the real workspace, in realtype
words, is given by the following:

e base value: lenrw = 55+ (m + 6) * N, + 3*nrtfn;
e with IDASVtolerances: lenrw = lenrw +N,;
e with constraint checking (see IDASetConstraints): lenrw = lenrw +N;;

e with id specified (see IDASetId): lenrw = lenrw +N,;

62 Using IDA for C Applications

where m = max(maxord, 3), and N, is the number of real words in one N_Vector (= N).
The size of the integer workspace (without distinction between int and long int words)
is given by:

e base value: leniw = 384 (m +6) * N; + nrtfn;

e with IDASVtolerances: leniw = leniw +N;;

e with constraint checking: lenrw = lenrw +N;;

e with id specified: lenrw = lenrw +N;;
where N; is the number of integer words in one N_Vector (= 1 for NVECTOR_SERIAL
and 2*npes for NVECTOR_PARALLEL Ol npes Processors).

For the default value of maxord, with no rootfinding, no id, no constraints, and with
no call to IDASVtolerances, these lengths are given roughly by: lenrw = 55+ 11N,
leniw = 49.

F2003 Name FIDAGetWorkSpace

IDAGetNumSteps‘

Call flag = IDAGetNumSteps(ida_mem, &nsteps);

Description The function IDAGetNumSteps returns the cumulative number of internal steps taken
by the solver (total so far).

Arguments idamem (void *) pointer to the IDA memory block.
nsteps (long int) number of steps taken by IDA.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetNumSteps

’IDAGetNumResEvals
Call flag = IDAGetNumResEvals(idamem, &nrevals);

Description The function IDAGetNumResEvals returns the number of calls to the user’s residual
evaluation function.

Arguments idamem (void *) pointer to the IDA memory block.

nrevals (long int) number of calls to the user’s res function.
Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes The nrevals value returned by IDAGetNumResEvals does not account for calls made to
res from a linear solver or preconditioner module.

F2003 Name FIDAGetNumResEvals

IDAGetNumLinSolvSetups

Call flag = IDAGetNumLinSolvSetups(idamem, &nlinsetups);

Description The function IDAGetNumLinSolvSetups returns the cumulative number of calls made
to the linear solver’s setup function (total so far).

Arguments ida_mem (void *) pointer to the IDA memory block.

4.5 User-callable functions 63

nlinsetups (long int) number of calls made to the linear solver setup function.
Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA_MEM_NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetNumLinSolvSetups

| IDAGetNumErrTestFails |

Call flag = IDAGetNumErrTestFails(ida_mem, &netfails);

Description The function IDAGetNumErrTestFails returns the cumulative number of local error
test failures that have occurred (total so far).

Arguments idamem (void *) pointer to the IDA memory block.

netfails (long int) number of error test failures.
Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

F2003 Name FIDAGetNumErrTestFails

| IDAGetLastOrder

Call flag = IDAGetLastOrder(ida_mem, &klast);

Description The function IDAGetLastOrder returns the integration method order used during the
last internal step.

Arguments idamem (void *) pointer to the IDA memory block.

klast (int) method order used on the last internal step.
Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA_ MEM NULL The ida mem pointer is NULL.

F2003 Name FIDAGetLastOrder

’IDAGetCurrentDrder

Call flag = IDAGetCurrentOrder(ida_mem, &kcur);

Description The function IDAGetCurrentOrder returns the integration method order to be used on
the next internal step.

Arguments idamem (void *) pointer to the IDA memory block.

kcur (int) method order to be used on the next internal step.
Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetCurrentOrder

64 Using IDA for C Applications
IDAGetLastStep‘
Call flag = IDAGetLastStep(ida_mem, &hlast);
Description The function IDAGetLastStep returns the integration step size taken on the last internal
step (if from IDASolve), or the last value of the artificial step size h (if from IDACalcIC).
Arguments idamem (void *) pointer to the IDA memory block.

Return value

hlast (realtype) step size taken on the last internal step by IDA, or last artificial
step size used in IDACalcIC, whichever was called last.

The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA_MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetLastStep

IDAGetCurrentStep

Call flag = IDAGetCurrentStep(ida_mem, &hcur);

Description The function IDAGetCurrentStep returns the integration step size to be attempted on
the next internal step.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

hcur (realtype) step size to be attempted on the next internal step.
The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetCurrentStep

IDAGetActualInitStep

Call flag = IDAGetActualInitStep(ida_mem, &hinused);

Description The function IDAGetActualInitStep returns the value of the integration step size used
on the first step.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

hinused (realtype) actual value of initial step size.
The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes Even if the value of the initial integration step size was specified by the user through a
call to IDASetInitStep, this value might have been changed by IDA to ensure that the
step size is within the prescribed bounds (hmin < ho < Amax), Or to meet the local error
test.

F2003 Name FIDAGetActuallnitStep

’IDAGetCurrentTime

Call flag = IDAGetCurrentTime(ida_mem, &tcur);

Description The function IDAGetCurrentTime returns the current internal time reached by the
solver.

Arguments idamem (void *) pointer to the IDA memory block.

tcur (realtype) current internal time reached.

4.5 User-callable functions 65

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetCurrentTime

’IDAGetTolScaleFactor
Call flag = IDAGetTolScaleFactor(ida mem, &tolsfac);

Description The function IDAGetTolScaleFactor returns a suggested factor by which the user’s
tolerances should be scaled when too much accuracy has been requested for some internal
step.

Arguments idamem (void *) pointer to the IDA memory block.
tolsfac (realtype) suggested scaling factor for user tolerances.
Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetTolScaleFactor

IDAGetErrWeights

Call flag = IDAGetErrWeights(ida mem, eweight);

Description The function IDAGetErrWeights returns the solution error weights at the current time.
These are the W; given by Eq. (2.6) (or by the user’s IDAEwtFn).

Arguments idamem (void *) pointer to the IDA memory block.
eweight (N_Vector) solution error weights at the current time.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes The user must allocate space for eweight.
F2003 Name FIDAGetErrWeights

’IDAGetEstLocalErrors‘
Call flag = IDAGetEstLocalErrors(ida mem, ele);

Description The function IDAGetEstLocalErrors returns the estimated local errors.

Arguments idamem (void *) pointer to the IDA memory block.
ele (N_Vector) estimated local errors at the current time.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida mem pointer is NULL.

Notes The user must allocate space for ele.
The values returned in ele are only valid if IDASolve returned a non-negative value.

The ele vector, togther with the eweight vector from IDAGetErrWeights, can be used
to determine how the various components of the system contributed to the estimated
local error test. Specifically, that error test uses the RMS norm of a vector whose
components are the products of the components of these two vectors. Thus, for example,
if there were recent error test failures, the components causing the failures are those
with largest values for the products, denoted loosely as eweight [i]*ele[i].

F2003 Name FIDAGetEstLocalErrors

66 Using IDA for C Applications

IDAGetIntegratorStats

Call flag = IDAGetIntegratorStats(ida_mem, &nsteps, &nrevals, &nlinsetups,
&netfails, &klast, &kcur, &hinused,
&hlast, &hcur, &tcur);

Description The function IDAGetIntegratorStats returns the IDA integrator statistics as a group.

Arguments ida_mem (void *) pointer to the IDA memory block.
nsteps (long int) cumulative number of steps taken by IDA.
nrevals (long int) cumulative number of calls to the user’s res function.
nlinsetups (long int) cumulative number of calls made to the linear solver setup
function.
netfails (long int) cumulative number of error test failures.
klast (int) method order used on the last internal step.
kcur (int) method order to be used on the next internal step.
hinused (realtype) actual value of initial step size.
hlast (realtype) step size taken on the last internal step.
hcur (realtype) step size to be attempted on the next internal step.
tcur (realtype) current internal time reached.

Return value The return value flag (of type int) is one of

IDA_SUCCESS the optional output values have been successfully set.
IDA MEM NULL the ida_mem pointer is NULL.

F2003 Name FIDAGetIntegratorStats

’IDAGetNumNonlinSoleters

Call flag = IDAGetNumNonlinSolvIters(ida_mem, &nniters);

Description The function IDAGetNumNonlinSolvIters returns the cumulative number of nonlinear
iterations performed.

Arguments idamem (void *) pointer to the IDA memory block.

nniters (long int) number of nonlinear iterations performed.
Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
IDA_MEM FAIL The SUNNONLINSOL module is NULL.

F2003 Name FIDAGetNumNonlinSolvIters

| IDAGetNumNonlinSolvConvFails |
Call flag = IDAGetNumNonlinSolvConvFails(ida mem, &nncfails);

Description The function IDAGetNumNonlinSolvConvFails returns the cumulative number of non-
linear convergence failures that have occurred.

Arguments idamem (void *) pointer to the IDA memory block.

nncfails (long int) number of nonlinear convergence failures.
Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetNumNonlinSolvConvFails

4.5 User-callable functions 67

’IDAGetNonlinSoletats

Call flag = IDAGetNonlinSolvStats(ida_mem, &nniters, &nncfails);
Description The function IDAGetNonlinSolvStats returns the IDA nonlinear solver statistics as a
group.
Arguments idamem (void *) pointer to the IDA memory block.
nniters (long int) cumulative number of nonlinear iterations performed.
nncfails (long int) cumulative number of nonlinear convergence failures.
Return value The return value flag (of type int) is one of
IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.
IDA_MEM_FAIL The SUNNONLINSOL module is NULL.
F2003 Name FIDAGetNonlinSolvStats

IDAGetReturnFlagName

Call name = IDAGetReturnFlagName(flag);

Description The function IDAGetReturnFlagName returns the name of the IDA constant correspond-
ing to flag.

Arguments The only argument, of type int, is a return flag from an 1DA function.
Return value The return value is a string containing the name of the corresponding constant.

F2003 Name FIDAGetReturnFlagName

4.5.10.3 Initial condition calculation optional output functions

IDAGetNumBcktrackOps

Call flag = IDAGetNumBacktrackOps(ida_mem, &nbacktr);

Description The function IDAGetNumBacktrackOps returns the number of backtrack operations done
in the linesearch algorithm in IDACalcIC.

Arguments idamem (void *) pointer to the IDA memory block.
nbacktr (long int) the cumulative number of backtrack operations.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA_MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetNumBcktrackOps

’IDAGetConSistentIC

Call flag = IDAGetConsistentIC(ida_mem, yyO.mod, ypO_mod);

Description The function IDAGetConsistentIC returns the corrected initial conditions calculated
by IDACalcIC.

Arguments idamem (void *) pointer to the IDA memory block.
yyOmod (N_Vector) consistent solution vector.
ypOmod (N_Vector) consistent derivative vector.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.

68 Using IDA for C Applications

IDA_ILL_INPUT The function was not called before the first call to IDASolve.
IDA MEM NULL The ida_mem pointer is NULL.

Notes If the consistent solution vector or consistent derivative vector is not desired, pass NULL
for the corresponding argument.

The user must allocate space for yy0_mod and ypO_mod (if not NULL).
F2003 Name FIDAGetConsistentIC

4.5.10.4 Rootfinding optional output functions

There are two optional output functions associated with rootfinding.

| IDAGetRootInfo
Call flag = IDAGetRootInfo(ida_mem, rootsfound);

Description The function IDAGetRootInfo returns an array showing which functions were found to
have a root.
Arguments idamem (void *) pointer to the IDA memory block.

rootsfound (int *) array of length nrtfn with the indices of the user functions g;
found to have a root. For ¢ = 0,...,nrtfn —1, rootsfound[i] # 0 if g; has a
root, and = 0 if not.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output values have been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

Notes Note that, for the components g; for which a root was found, the sign of rootsfound][i]
indicates the direction of zero-crossing. A value of +1 indicates that g; is increasing,
while a value of —1 indicates a decreasing g;.

The user must allocate memory for the vector rootsfound.
F2003 Name FIDAGetRootInfo

’IDAGetNumGEvals
Call flag = IDAGetNumGEvals(ida mem, &ngevals);

Description The function IDAGetNumGEvals returns the cumulative number of calls to the user root
function g.

Arguments idamem (void *) pointer to the IDA memory block.
ngevals (long int) number of calls to the user’s function g so far.

Return value The return value flag (of type int) is one of

IDA_SUCCESS The optional output value has been successfully set.
IDA MEM NULL The ida_mem pointer is NULL.

F2003 Name FIDAGetNumGEvals

4.5.10.5 1DALS linear solver interface optional output functions

The following optional outputs are available from the IDALS modules: workspace requirements, number
of calls to the Jacobian routine, number of calls to the residual routine for finite-difference Jacobian
or Jacobian-vector product approximation, number of linear iterations, number of linear convergence
failures, number of calls to the preconditioner setup and solve routines, number of calls to the Jacobian-
vector setup and product routines, and last return value from an IDALS function. Note that, where
the name of an output would otherwise conflict with the name of an optional output from the main
solver, a suffix LS (for Linear Solver) has been added (e.g., LenrwLS).

4.5 User-callable functions 69

IDAGetLinWorkSpace

Call flag = IDAGetLinWorkSpace(ida mem, &lenrwLS, &leniwLS);

Description The function IDAGetLinWorkSpace returns the sizes of the real and integer workspaces
used by the IDALS linear solver interface.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

lenrwLS (long int) the number of real values in the IDALS workspace.
leniwLS (long int) the number of integer values in the IDALS workspace.

The return value flag (of type int) is one of
IDALS_SUCCESS The optional output value has been successfully set.

IDALS MEM_NULL The ida_mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

Notes The workspace requirements reported by this routine correspond only to memory allo-

cated within this interface and to memory allocated by the SUNLINSOL object attached
to it. The template Jacobian matrix allocated by the user outside of IDALS is not
included in this report.
The previous routines IDAD1sGetWorkspace and IDASpilsGetWorkspace are now wrap-
pers for this routine, and may still be used for backward-compatibility. However, these
will be deprecated in future releases, so we recommend that users transition to the new
routine name soon.

F2003 Name FIDAGetLinWorkSpace

’IDAGetNumJacEvals‘

Call flag = IDAGetNumJacEvals(ida_mem, &njevals);

Description The function IDAGetNumJacEvals returns the cumulative number of calls to the IDALS
Jacobian approximation function.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

njevals (long int) the cumulative number of calls to the Jacobian function (total so
far).

The return value flag (of type int) is one of
IDALS_SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida_mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

Notes The previous routine IDAD1sGetNumJacEvals is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumJacEvals

’IDAGetNumLinResEvals‘

Call flag = IDAGetNumLinResEvals(ida mem, &nrevalsLS);

Description The function IDAGetNumLinResEvals returns the cumulative number of calls to the user
residual function due to the finite difference Jacobian approximation or finite difference
Jacobian-vector product approximation.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

nrevalsLS (long int) the cumulative number of calls to the user residual function.

The return value flag (of type int) is one of

70 Using IDA for C Applications
IDALS_SUCCESS The optional output value has been successfully set.
IDALS MEM NULL The ida mem pointer is NULL.

IDALS_LMEM NULL The IDALS linear solver has not been initialized.

Notes The value nrevalsLS is incremented only if one of the default internal difference quotient

functions is used.
The previous routines IDAD1sGetNumResEvals and IDASpilsGetNumResEvals are now
wrappers for this routine, and may still be used for backward-compatibility. However,
these will be deprecated in future releases, so we recommend that users transition to
the new routine name soon.

F2003 Name FIDAGetNumLinResEvals

| IDAGetNumLinIters

Call flag = IDAGetNumLinIters(ida mem, &nliters);

Description The function IDAGetNumLinIters returns the cumulative number of linear iterations.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

nliters (long int) the current number of linear iterations.
The return value flag (of type int) is one of
IDALS_SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida_mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

Notes The previous routine IDASpilsGetNumLinIters is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumLinIters

| IDAGetNumLinConvFails

Call flag = IDAGetNumLinConvFails(ida_mem, &nlcfails);

Description The function IDAGetNumLinConvFails returns the cumulative number of linear conver-
gence failures.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

nlcfails (long int) the current number of linear convergence failures.
The return value flag (of type int) is one of
IDALS_SUCCESS The optional output value has been successfully set.

IDALS MEM_NULL The ida_mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

Notes The previous routine IDASpilsGetNumConvFails is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumLinConvFails

’IDAGetNumPrecEvals

Call flag = IDAGetNumPrecEvals(ida mem, &npevals);

Description The function IDAGetNumPrecEvals returns the cumulative number of preconditioner
evaluations, i.e., the number of calls made to psetup.

Arguments idamem (void *) pointer to the IDA memory block.

4.5 User-callable functions 71

Return value

npevals (long int) the cumulative number of calls to psetup.
The return value flag (of type int) is one of
IDALS_SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

Notes The previous routine IDASpilsGetNumPrecEvals is now a wrapper for this routine, and
may still be used for backward-compatibility. However, this will be deprecated in future
releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumPrecEvals

’IDAGetNumPrecSolves

Call flag = IDAGetNumPrecSolves(ida mem, &npsolves);

Description The function IDAGetNumPrecSolves returns the cumulative number of calls made to
the preconditioner solve function, psolve.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

npsolves (long int) the cumulative number of calls to psolve.
The return value flag (of type int) is one of
IDALS_SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida_mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

Notes The previous routine IDASpilsGetNumPrecSolves is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumPrecSolves

IDAGetNumJTSetupEvals

Call flag = IDAGetNumJTSetupEvals(ida_mem, &njtsetup);

Description The function IDAGetNumJTSetupEvals returns the cumulative number of calls made to
the Jacobian-vector setup function jtsetup.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

njtsetup (long int) the current number of calls to jtsetup.
The return value flag (of type int) is one of
IDALS_SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

Notes The previous routine IDASpilsGetNumJTSetupEvals is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumJTSetupEvals

| IDAGetNumJtimesEvals |

Call flag = IDAGetNumJtimesEvals(ida_mem, &njvevals);

Description The function IDAGetNumJtimesEvals returns the cumulative number of calls made to

the Jacobian-vector function, jtimes.

72

Using IDA for C Applications

Arguments

Return value

idamem (void *) pointer to the IDA memory block.

njvevals (long int) the cumulative number of calls to jtimes.

The return value flag (of type int) is one of

IDALS_SUCCESS The optional output value has been successfully set.

IDALS MEM NULL The ida mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

Notes The previous routine IDASpilsGetNumJtimesEvals is now a wrapper for this routine,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new routine name soon.

F2003 Name FIDAGetNumJtimesEvals

IDAGetLastLinFlag‘

Call flag = IDAGetLastLinFlag(ida_mem, &lsflag);

Description The function IDAGetLastLinFlag returns the last return value from an IDALS routine.

Arguments idamem (void *) pointer to the IDA memory block.

Return value

Notes

F2003 Name

1lsflag (long int) the value of the last return flag from an IDALS function.
The return value flag (of type int) is one of

IDALS_SUCCESS The optional output value has been successfully set.
IDALS MEM NULL The ida mem pointer is NULL.
IDALS_LMEM_NULL The IDALS linear solver has not been initialized.

If the IDALS setup function failed (i.e., IDASolve returned IDA_LSETUP_FAIL) when
using the SUNLINSOL_DENSE or SUNLINSOL_BAND modules, then the value of 1sflag is
equal to the column index (numbered from one) at which a zero diagonal element was
encountered during the LU factorization of the (dense or banded) Jacobian matrix.

If the IDALS setup function failed when using another SUNLINSOL module, then 1sflag
will be SUNLS_PSET_FAIL_UNREC, SUNLS_ASET_FAIL_UNREC, or
SUNLS_PACKAGE_FAIL_UNREC.

If the IDALS solve function failed (IDASolve returned IDA_LSOLVE_FAIL), 1sflag con-
tains the error return flag from the SUNLINSOL object, which will be one of:
SUNLS_MEM_NULL, indicating that the SUNLINSOL memory is NULL;
SUNLS_ATIMES FAIL UNREC, indicating an unrecoverable failure in the J % v function;
SUNLS_PSOLVE_FAIL_UNREC, indicating that the preconditioner solve function psolve
failed unrecoverably; SUNLS_GS_FAIL, indicating a failure in the Gram-Schmidt proce-
dure (generated only in SPGMR or SPFGMR); SUNLS_QRSOL_FAIL, indicating that the
matrix R was found to be singular during the QR solve phase (SPGMR and SPFGMR
only); or SUNLS_PACKAGE FAIL UNREC, indicating an unrecoverable failure in an external
iterative linear solver package.

The previous routines IDAD1sGetLastFlag and IDASpilsGetLastFlag are now wrap-
pers for this routine, and may still be used for backward-compatibility. However, these
will be deprecated in future releases, so we recommend that users transition to the new
routine name soon.

FIDAGetLastLinFlag

IDAGetLinReturnFlagName

Call

Description

name = IDAGetLinReturnFlagName (1sflag);

The function IDAGetLinReturnFlagName returns the name of the IDALS constant cor-
responding to 1sflag.

4.5 User-callable functions 73

Arguments The only argument, of type long int, is a return flag from an IDALS function.
Return value The return value is a string containing the name of the corresponding constant.
If 1 <1sflag < N (LU factorization failed), this function returns “NONE”.

Notes The previous routines IDAD1sGetReturnFlagName and IDASpilsGetReturnFlagName
are now wrappers for this routine, and may still be used for backward-compatibility.
However, these will be deprecated in future releases, so we recommend that users tran-
sition to the new routine name soon.

F2003 Name FIDAGetLinReturnFlagName

4.5.11 IDA reinitialization function

The function IDAReInit reinitializes the main IDA solver for the solution of a new problem, where
a prior call to IDAInit has been made. The new problem must have the same size as the previous
one. IDAReInit performs the same input checking and initializations that IDAInit does, but does
no memory allocation, as it assumes that the existing internal memory is sufficient for the new prob-
lem. A call to IDAReInit deletes the solution history that was stored internally during the previous
integration. Following a successful call to IDAReInit, call IDASolve again for the solution of the new
problem.

The use of IDAReInit requires that the maximum method order, maxord, is no larger for the new
problem than for the problem specified in the last call to IDAInit. In addition, the same NVECTOR
module set for the previous problem will be reused for the new problem.

If there are changes to the linear solver specifications, make the appropriate calls to either the
linear solver objects themselves, or to the IDALS interface routines, as described in §4.5.3.

If there are changes to any optional inputs, make the appropriate IDASet*** calls, as described in
§4.5.8. Otherwise, all solver inputs set previously remain in effect.

One important use of the IDAReInit function is in the treating of jump discontinuities in the
residual function. Except in cases of fairly small jumps, it is usually more efficient to stop at each point
of discontinuity and restart the integrator with a readjusted DAE model, using a call to IDAReInit.
To stop when the location of the discontinuity is known, simply make that location a value of tout. To
stop when the location of the discontinuity is determined by the solution, use the rootfinding feature.
In either case, it is critical that the residual function not incorporate the discontinuity, but rather have
a smooth extention over the discontinuity, so that the step across it (and subsequent rootfinding, if
used) can be done efficiently. Then use a switch within the residual function (communicated through
user_data) that can be flipped between the stopping of the integration and the restart, so that the
restarted problem uses the new values (which have jumped). Similar comments apply if there is to be
a jump in the dependent variable vector.

IDAReInit

Call flag = IDAReInit(ida_mem, t0, yO, ypO);
Description The function IDAReInit provides required problem specifications and reinitializes IDA.

Arguments idamem (void *) pointer to the IDA memory block.

t0 (realtype) is the initial value of ¢.
yO (N_Vector) is the initial value of y.
ypO (N_Vector) is the initial value of y.

Return value The return value flag (of type int) will be one of the following;:

IDA_SUCCESS The call to IDAReInit was successful.

IDA MEM NULL The IDA memory block was not initialized through a previous call to
IDACreate.

IDA_NO_MALLOC Memory space for the IDA memory block was not allocated through a
previous call to IDAInit.

74 Using IDA for C Applications

IDA_TLL_INPUT An input argument to IDAReInit has an illegal value.

Notes If an error occurred, IDAReInit also sends an error message to the error handler func-
tion.

F2003 Name FIDARelInit

4.6 User-supplied functions

The user-supplied functions consist of one function defining the DAE residual, (optionally) a function
that handles error and warning messages, (optionally) a function that provides the error weight vector,
(optionally) one or two functions that provide Jacobian-related information for the linear solver, and
(optionally) one or two functions that define the preconditioner for use in any of the Krylov iteration
algorithms.

4.6.1 Residual function

The user must provide a function of type IDAResFn defined as follows:

Definition typedef int (*IDAResFn) (realtype tt, N_Vector yy, N_Vector yp,
N_Vector rr, void *user_data);

Purpose This function computes the problem residual for given values of the independent variable
t, state vector y, and derivative g.

Arguments tt is the current value of the independent variable.
yy is the current value of the dependent variable vector, y(t).
yp is the current value of §(t).
rr is the output residual vector F'(t,y,).

user_data is a pointer to user data, the same as the user_data parameter passed to
IDASetUserData.

Return value An IDAResFn function type should return a value of 0 if successful, a positive value
if a recoverable error occurred (e.g., yy has an illegal value), or a negative value if a
nonrecoverable error occurred. In the last case, the integrator halts. If a recoverable
error occurred, the integrator will attempt to correct and retry.

Notes A recoverable failure error return from the IDAResFn is typically used to flag a value
of the dependent variable y that is “illegal” in some way (e.g., negative where only a
non-negative value is physically meaningful). If such a return is made, IDA will attempt
to recover (possibly repeating the nonlinear solve, or reducing the step size) in order to
avoid this recoverable error return.

For efficiency reasons, the DAE residual function is not evaluated at the converged solu-
tion of the nonlinear solver. Therefore, in general, a recoverable error in that converged
value cannot be corrected. (It may be detected when the residual function is called the
first time during the following integration step, but a successful step cannot be undone.)

Allocation of memory for yp is handled within 1DA.

4.6.2 Error message handler function

As an alternative to the default behavior of directing error and warning messages to the file pointed to
by errfp (see IDASetErrFile), the user may provide a function of type IDAErrHandlerFn to process
any such messages. The function type IDAErrHandlerFn is defined as follows:

4.6 User-supplied functions 75

IDAErrHandlerFn

Definition typedef void (*IDAErrHandlerFn) (int error_code, const char *module,
const char *function, char *msg,
void *eh_data);

Purpose This function processes error and warning messages from IDA and its sub-modules.

Arguments error_code is the error code.

module is the name of the IDA module reporting the error.

function is the name of the function in which the error occurred.

msg is the error message.

eh_data is a pointer to user data, the same as the eh_data parameter passed to
IDASetErrHandlerFn.

Return value A IDAErrHandlerFn function has no return value.

Notes error_code is negative for errors and positive (IDA_-WARNING) for warnings. If a function
that returns a pointer to memory encounters an error, it sets error_code to 0.

4.6.3 Error weight function

As an alternative to providing the relative and absolute tolerances, the user may provide a function of
type IDAEwtFn to compute a vector ewt containing the multiplicative weights W; used in the WRMS

norm || v|jwrms = \/(l/N) Zf[(Wz -v;)2. These weights will used in place of those defined by Eq.
(2.6). The function type IDAEwtFn is defined as follows:

Definition typedef int (*IDAEwtFn) (N_Vector y, N_Vector ewt, void *user_data);

Purpose This function computes the WRMS error weights for the vector y.
Arguments y is the value of the dependent variable vector at which the weight vector is
to be computed.
ewt is the output vector containing the error weights.
user_data is a pointer to user data, the same as the user_data parameter passed to
IDASetUserData.
Return value An IDAEwtFn function type must return 0 if it successfully set the error weights and —1
otherwise.
Notes Allocation of memory for ewt is handled within IDA.

The error weight vector must have all components positive. It is the user’s responsiblity
to perform this test and return —1 if it is not satisfied.

4.6.4 Rootfinding function

If a rootfinding problem is to be solved during the integration of the DAE system, the user must
supply a C function of type IDARootFn, defined as follows:

IDARootFn

Definition typedef int (*IDARootFn) (realtype t, N_Vector y, N_Vector yp,
realtype *gout, void *user_data);

Purpose This function computes a vector-valued function ¢(¢,y,y) such that the roots of the
nrtfn components g;(t,y,y) are to be found during the integration.

Arguments t is the current value of the independent variable.
y is the current value of the dependent variable vector, y(t).

76 Using IDA for C Applications

yp is the current value of ¢(t), the t—derivative of y.

gout is the output array, of length nrtfn, with components g;(t,y, ¥).

user_data is a pointer to user data, the same as the user_data parameter passed to
IDASetUserData.

Return value An IDARootFn should return 0 if successful or a non-zero value if an error occurred (in
which case the integration is halted and IDASolve returns IDA RTFUNC_FAIL).

Notes Allocation of memory for gout is handled within IDA.

4.6.5 Jacobian construction (matrix-based linear solvers)

If a matrix-based linear solver module is used (i.e. a non-NULL SUNMATRIX object was supplied to
IDASetLinearSolver), the user may provide a function of type IDALsJacFn defined as follows:

IDALsJacFn

Definition typedef int (*IDALsJacFn) (realtype tt, realtype cj,
N_Vector yy, N_Vector yp, N_Vector rr,
SUNMatrix Jac, void *user_data,
N_Vector tmpl, N_Vector tmp2, N_Vector tmp3);

Purpose This function computes the Jacobian matrix J of the DAE system (or an approximation
to it), defined by Eq. (2.5).
Arguments tt is the current value of the independent variable ¢.
cj is the scalar in the system Jacobian, proportional to the inverse of the step
size (a in Eq. (2.5)).
yy is the current value of the dependent variable vector, y(t).
yp is the current value of y(t).
rr is the current value of the residual vector F(¢,y, 7).
Jac is the output (approximate) Jacobian matrix (of type SUNMatrix), J =

OF /0y + ¢j OF/0y.
user_data is a pointer to user data, the same as the user_data parameter passed to

IDASetUserData.
tmpl
tmp2
tmp3 are pointers to memory allocated for variables of type N_Vector which can

be used by IDALsJacFn function as temporary storage or work space.

Return value An IDALsJacFn should return 0 if successful, a positive value if a recoverable error
occurred, or a negative value if a nonrecoverable error occurred.

In the case of a recoverable eror return, the integrator will attempt to recover by reducing
the stepsize, and hence changing « in (2.5).

Notes Information regarding the structure of the specific SUNMATRIX structure (e.g., number
of rows, upper/lower bandwidth, sparsity type) may be obtained through using the
implementation-specific SUNMATRIX interface functions (see Chapter 8 for details).

With direct linear solvers (i.e., linear solvers with type SUNLINEARSOLVER DIRECT), the
Jacobian matrix J(¢,y) is zeroed out prior to calling the user-supplied Jacobian function
so only nonzero elements need to be loaded into Jac.

With the default nonlinear solver (the native SUNDIALS Netwon method), each call to
the user’s IDALsJacFn function is preceded by a call to the IDAResFn user function with
the same (tt, yy, yp) arguments. Thus the Jacobian function can use any auxiliary
data that is computed and saved during the evaluation of the DAE residual. In the
case of a user-supplied or external nonlinear solver, this is also true if the residual

4.6 User-supplied functions 77

function is evaluated prior to calling the linear solver setup function (see §10.1.4 for
more information).

If the user’s IDALsJacFn function uses difference quotient approximations, it may need
to access quantities not in the call list. These quantities may include the current stepsize,
the error weights, etc. To obtain these, the user will need to add a pointer to ida_mem to
user_data and then use the IDAGet* functions described in §4.5.10.2. The unit roundoff
can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

dense:

A user-supplied dense Jacobian function must load the Neq x Neq dense matrix Jac
with an approximation to the Jacobian matrix J(¢,y,y) at the point (tt, yy, yp). The
accessor macros SM_ELEMENT D and SM_COLUMN_D allow the user to read and write dense
matrix elements without making explicit references to the underlying representation of
the SUNMATRIX_DENSE type. SM_ELEMENT D(J, i, j) references the (i, j)-th element
of the dense matrix Jac (with i, j = 0...N — 1). This macro is meant for small
problems for which efficiency of access is not a major concern. Thus, in terms of
the indices m and n ranging from 1 to N, the Jacobian element J,, , can be set using
the statement SM_ELEMENT D(J, m-1, n-1) =.J,, ,. Alternatively, SM_COLUMN_.D(J, j)
returns a pointer to the first element of the j-th column of Jac (with j =0...N— 1),
and the elements of the j-th column can then be accessed using ordinary array indexing.
Consequently, J,,, , can be loaded using the statements col.n = SM_COLUMN_D(J, n-1);
coln[m-1] = J,, . For large problems, it is more efficient to use SM_COLUMN_D than to
use SM_ELEMENT_D. Note that both of these macros number rows and columns starting
from 0. The SUNMATRIX_DENSE type and accessor macros are documented in §8.3.

banded:

A user-supplied banded Jacobian function must load the Neq x Neq banded matrix
Jac with an approximation to the Jacobian matrix J(¢,y,y) at the point (tt, yy, yp).
The accessor macros SM_ELEMENT B, SM_COLUMN_B, and SM_COLUMN_ELEMENT B allow the
user to read and write banded matrix elements without making specific references to
the underlying representation of the SUNMATRIX_BAND type. SM_ELEMENT B(J, i, j)
references the (i, j)-th element of the banded matrix Jac, counting from 0. This
macro is meant for use in small problems for which efficiency of access is not a major
concern. Thus, in terms of the indices m and n ranging from 1 to N with (m,n)
within the band defined by mupper and mlower, the Jacobian element .J,, , can be
loaded using the statement SM_ELEMENT B(J, m-1, n-1) = J,, . The elements within
the band are those with -mupper < m-n < mlower. Alternatively, SM_COLUMN B(J,
j) returns a pointer to the diagonal element of the j-th column of Jac, and if we
assign this address to realtype *col_j, then the i-th element of the j-th column
is given by SM_COLUMN_ELEMENT B(col_j, i, j), counting from 0. Thus, for (m,n)
within the band, J,, , can be loaded by setting col.n = SM_COLUMN_B(J, n-1); and
SM_COLUMN_ELEMENT B(col.n, m-1, n-1) = J,,,. The elements of the j-th column
can also be accessed via ordinary array indexing, but this approach requires knowledge
of the underlying storage for a band matrix of type SUNMATRIX_BAND. The array col.n
can be indexed from —mupper to mlower. For large problems, it is more efficient to
use SM_COLUMN B and SM_COLUMN_ELEMENT B than to use the SM_ELEMENT B macro. As
in the dense case, these macros all number rows and columns starting from 0. The
SUNMATRIX_BAND type and accessor macros are documented in §8.4.

sparse:
A user-supplied sparse Jacobian function must load the Neq x Neq compressed-sparse-
column or compressed-sparse-row matrix Jac with an approximation to the Jacobian
matrix J(t,y,y) at the point (tt, yy, yp). Storage for Jac already exists on entry to
this function, although the user should ensure that sufficient space is allocated in Jac
to hold the nonzero values to be set; if the existing space is insufficient the user may
reallocate the data and index arrays as needed. The amount of allocated space in a

78

Using IDA for C Applications

SUNMATRIX_SPARSE object may be accessed using the macro SM_NNZ_S or the routine
SUNSparseMatrix NNZ. The SUNMATRIX_SPARSE type and accessor macros are docu-
mented in §8.5.

The previous function type IDAD1sJacFn is identical to IDALsJacFn, and may still be
used for backward-compatibility. However, this will be deprecated in future releases, so
we recommend that users transition to the new function type name soon.

4.6.6 Jacobian-vector product (matrix-free linear solvers)

If a matrix-free linear solver is to be used (i.e., a NULL-valued SUNMATRIX was supplied to
IDASetLinearSolver), the user may provide a function of type IDALsJacTimesVecFn in the following
form, to compute matrix-vector products Jv. If such a function is not supplied, the default is a
difference quotient approximation to these products.

IDALsJacTimesVecFn ‘

Definition

Purpose

Arguments

Return value

Notes

typedef int (*IDALsJacTimesVecFn) (realtype tt, N_Vector yy,
N_Vector yp, N_Vector rr,
N_Vector v, N_Vector Jv,
realtype cj, void *user_data,
N_Vector tmpl, N_Vector tmp2);

This function computes the product Jv of the DAE system Jacobian J (or an approxi-
mation to it) and a given vector v, where J is defined by Eq. (2.5).

tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of ¢(t).

rr is the current value of the residual vector F(¢,y,).

v is the vector by which the Jacobian must be multiplied to the right.

Jv is the computed output vector.

cj is the scalar in the system Jacobian, proportional to the inverse of the step

size (o in Eq. (2.5)).
user_data is a pointer to user data, the same as the user_data parameter passed to
IDASetUserData.

tmpl
tmp2 are pointers to memory allocated for variables of type N_Vector which can
be used by IDALsJacTimesVecFn as temporary storage or work space.

The value returned by the Jacobian-times-vector function should be 0 if successful. A
nonzero value indicates that a nonrecoverable error occurred.

This function must return a value of .J * v that uses the current value of J, i.e. as
evaluated at the current (t,y,9).

If the user’s IDALsJacTimesVecFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, the user will need to add a pointer to ida_mem to
user_data and then use the IDAGet* functions described in §4.5.10.2. The unit roundoff
can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

The previous function type IDASpilsJacTimesVecFn is identical to
IDALsJacTimesVecFn, and may still be used for backward-compatibility. However, this
will be deprecated in future releases, so we recommend that users transition to the new
function type name soon.

4.6 User-supplied functions 79

4.6.7 Jacobian-vector product setup (matrix-free linear solvers)

If the user’s Jacobian-times-vector requires that any Jacobian-related data be preprocessed or evalu-
ated, then this needs to be done in a user-supplied function of type IDALsJacTimesSetupFn, defined
as follows:

IDALsJacTimesSetupFn

Definition typedef int (*IDALsJacTimesSetupFn) (realtype tt, N_Vector yy,
N_Vector yp, N_Vector rr,
realtype cj, void *user_data);

Purpose This function preprocesses and/or evaluates Jacobian data needed by the Jacobian-
times-vector routine.
Arguments tt is the current value of the independent variable.
vy is the current value of the dependent variable vector, y(t).
yp is the current value of y(t).
rr is the current value of the residual vector F'(¢,y,).
cj is the scalar in the system Jacobian, proportional to the inverse of the step

size (a in Eq. (2.5)).
user_data is a pointer to user data, the same as the user_data parameter passed to
IDASetUserData.

Return value The value returned by the Jacobian-vector setup function should be 0 if successful,
positive for a recoverable error (in which case the step will be retried), or negative for
an unrecoverable error (in which case the integration is halted).

Notes Each call to the Jacobian-vector setup function is preceded by a call to the IDAResFn
user function with the same (t,y, yp) arguments. Thus, the setup function can use any
auxiliary data that is computed and saved during the evaluation of the DAE residual.

If the user’s IDALsJacTimesVecFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize, the
error weights, etc. To obtain these, the user will need to add a pointer to ida_mem to
user_data and then use the IDAGet* functions described in §4.5.10.2. The unit roundoff
can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

The previous function type IDASpilsJacTimesSetupFn is identical to
IDALsJacTimesSetupFn, and may still be used for backward-compatibility. However,
this will be deprecated in future releases, so we recommend that users transition to the
new function type name soon.

4.6.8 Preconditioner solve (iterative linear solvers)

If a user-supplied preconditioner is to be used with a SUNLINSOL solver module, then the user must
provide a function to solve the linear system Pz = r where P is a left preconditioner matrix which
approximates (at least crudely) the Jacobian matrix J = 0F /0y + ¢j OF/9y. This function must be
of type IDALsPrecSolveFn, defined as follows:

| IDALsPrecSolveFn |

Definition typedef int (*IDALsPrecSolveFn) (realtype tt, N_Vector yy,
N_Vector yp, N_Vector rr,
N_Vector rvec, N_Vector zvec,
realtype cj, realtype delta,
void *user_data);

Purpose This function solves the preconditioning system Pz = r.

80 Using IDA for C Applications
Arguments tt is the current value of the independent variable.

vy is the current value of the dependent variable vector, y(t).

ypP is the current value of y(t).

rr is the current value of the residual vector F(¢,y, 7).

rvec is the right-hand side vector r of the linear system to be solved.

zvec is the computed output vector.

cj is the scalar in the system Jacobian, proportional to the inverse of the step

size (o in Eq. (2.5)).
delta is an input tolerance to be used if an iterative method is employed in the

Return value

Notes

solution. In that case, the residual vector Res = r— Pz of the system should
be made less than delta in weighted Iy norm, ie., />, (Res; - ewt;)? <
delta. To obtain the N_Vector ewt, call IDAGetErrWeights (see §4.5.10.2).

user_data is a pointer to user data, the same as the user_data parameter passed to
the function IDASetUserData.

The value to be returned by the preconditioner solve function is a flag indicating whether
it was successful. This value should be 0 if successful, positive for a recoverable error
(in which case the step will be retried), negative for an unrecoverable error (in which
case the integration is halted).

The previous function type IDASpilsPrecSolveFn is identical to IDALsPrecSolveFn,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

4.6.9 Preconditioner setup (iterative linear solvers)

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed, then
this needs to be done in a user-supplied function of type IDALsPrecSetupFn, defined as follows:

IDALsPrecSetupFn

Definition

Purpose

Arguments

Return value

Notes

typedef int (*IDALsPrecSetupFn) (realtype tt, N_Vector yy,
N_Vector yp, N_Vector rr,
realtype cj, void *user_data);

This function evaluates and/or preprocesses Jacobian-related data needed by the pre-
conditioner.

tt is the current value of the independent variable.

yy is the current value of the dependent variable vector, y(t).

yp is the current value of y(t).

T is the current value of the residual vector F'(¢,y,9).

cj is the scalar in the system Jacobian, proportional to the inverse of the step

size (a in Eq. (2.5)).
user_data is a pointer to user data, the same as the user_data parameter passed to
the function IDASetUserData.

The value returned by the preconditioner setup function is a flag indicating whether it
was successful. This value should be 0 if successful, positive for a recoverable error (in
which case the step will be retried), negative for an unrecoverable error (in which case
the integration is halted).

The operations performed by this function might include forming a crude approximate
Jacobian, and performing an LU factorization on the resulting approximation.

With the default nonlinear solver (the native SUNDIALS Netwon method), each call to
the preconditioner setup function is preceded by a call to the IDAResFn user function

4.7 A parallel band-block-diagonal preconditioner module 81

with the same (tt, yy, yp) arguments. Thus the preconditioner setup function can
use any auxiliary data that is computed and saved during the evaluation of the DAE
residual. In the case of a user-supplied or external nonlinear solver, this is also true if
the residual function is evaluated prior to calling the linear solver setup function (see
§10.1.4 for more information).

This function is not called in advance of every call to the preconditioner solve function,
but rather is called only as often as needed to achieve convergence in the nonlinear
solver.

If the user’s IDALsPrecSetupFn function uses difference quotient approximations, it
may need to access quantities not in the call list. These include the current stepsize,
the error weights, etc. To obtain these, the user will need to add a pointer to ida_mem to
user_data and then use the IDAGet* functions described in §4.5.10.2. The unit roundoff
can be accessed as UNIT_ROUNDOFF defined in sundials_types.h.

The previous function type IDASpilsPrecSetupFn is identical to IDALsPrecSetupFn,
and may still be used for backward-compatibility. However, this will be deprecated in
future releases, so we recommend that users transition to the new function type name
soon.

4.7 A parallel band-block-diagonal preconditioner module

A principal reason for using a parallel DAE solver such as IDA lies in the solution of partial differential
equations (PDEs). Moreover, the use of a Krylov iterative method for the solution of many such
problems is motivated by the nature of the underlying linear system of equations (2.4) that must be
solved at each time step. The linear algebraic system is large, sparse, and structured. However, if a
Krylov iterative method is to be effective in this setting, then a nontrivial preconditioner needs to be
used. Otherwise, the rate of convergence of the Krylov iterative method is usually unacceptably slow.
Unfortunately, an effective preconditioner tends to be problem-specific.

However, we have developed one type of preconditioner that treats a rather broad class of PDE-
based problems. It has been successfully used for several realistic, large-scale problems [36] and is
included in a software module within the IDA package. This module works with the parallel vector
module NVECTOR_PARALLEL and generates a preconditioner that is a block-diagonal matrix with each
block being a band matrix. The blocks need not have the same number of super- and sub-diagonals,
and these numbers may vary from block to block. This Band-Block-Diagonal Preconditioner module
is called IDABBDPRE.

One way to envision these preconditioners is to think of the domain of the computational PDE
problem as being subdivided into M non-overlapping sub-domains. Each of these sub-domains is then
assigned to one of the M processors to be used to solve the DAE system. The basic idea is to isolate the
preconditioning so that it is local to each processor, and also to use a (possibly cheaper) approximate
residual function. This requires the definition of a new function G(¢,y,¥y) which approximates the
function F(t,y,y) in the definition of the DAE system (2.1). However, the user may set G = F.
Corresponding to the domain decomposition, there is a decomposition of the solution vectors y and y
into M disjoint blocks y,, and 9,,, and a decomposition of G into blocks G,,. The block G,,, depends
on Y, and ¥,,, and also on components of y,,» and gy, associated with neighboring sub-domains
(so-called ghost-cell data). Let #,, and g, denote y,, and ¥,, (respectively) augmented with those
other components on which G,, depends. Then we have

G(t,y,9) = [G1(t, 51, 91), Go(t, P2, 92), - - .. Gas (8, Gar, yar)] " (4.1)

and each of the blocks G, (¢, 9, ¥m) is uncoupled from the others.
The preconditioner associated with this decomposition has the form

P = diag[Py, Py, ..., Py (4.2)

82 Using IDA for C Applications

where
P, = 0G0y + @OG 1,/ OYm (4.3)

This matrix is taken to be banded, with upper and lower half-bandwidths mudq and mldq defined as
the number of non-zero diagonals above and below the main diagonal, respectively. The difference
quotient approximation is computed using mudq + mldq +2 evaluations of GG,, but only a matrix of
bandwidth mukeep + mlkeep +1 is retained.

Neither pair of parameters need be the true half-bandwidths of the Jacobians of the local block of
G, if smaller values provide a more efficient preconditioner. Such an efficiency gain may occur if the
couplings in the DAE system outside a certain bandwidth are considerably weaker than those within
the band. Reducing mukeep and mlkeep while keeping mudq and mldq at their true values, discards
the elements outside the narrower band. Reducing both pairs has the additional effect of lumping the
outer Jacobian elements into the computed elements within the band, and requires more caution and
experimentation.

The solution of the complete linear system

Pz =1 (4.4)

reduces to solving each of the equations
Pz, = by, (4.5)

and this is done by banded LU factorization of P,, followed by a banded backsolve.

Similar block-diagonal preconditioners could be considered with different treatment of the blocks
P,,. For example, incomplete LU factorization or an iterative method could be used instead of banded
LU factorization.

The IDABBDPRE module calls two user-provided functions to construct P: a required function
Gres (of type IDABBDLocalFn) which approximates the residual function G(t,y,y) = F(t,y,y) and
which is computed locally, and an optional function Gcomm (of type IDABBDCommFn) which performs
all inter-process communication necessary to evaluate the approximate residual G. These are in
addition to the user-supplied residual function res. Both functions take as input the same pointer
user_data as passed by the user to IDASetUserData and passed to the user’s function res. The user
is responsible for providing space (presumably within user_data) for components of yy and yp that
are communicated by Gcomm from the other processors, and that are then used by Gres, which should
not do any communication.

IDABBDLocalFn

Definition typedef int (*IDABBDLocalFn) (sunindextype Nlocal, realtype tt,
N_Vector yy, N_Vector yp, N_Vector gval,
void *user_data);

Purpose This Gres function computes G(t,y,y). It loads the vector gval as a function of tt,
yy, and yp.
Arguments Nlocal is the local vector length.
tt is the value of the independent variable.
vy is the dependent variable.
yp is the derivative of the dependent variable.
gval is the output vector.

user_data is a pointer to user data, the same as the user_data parameter passed to
IDASetUserData.

Return value An IDABBDLocalFn function type should return 0 to indicate success, 1 for a recoverable
error, or -1 for a non-recoverable error.

Notes This function must assume that all inter-processor communication of data needed to
calculate gval has already been done, and this data is accessible within user_data.

The case where GG is mathematically identical to F' is allowed.

4.7 A parallel band-block-diagonal preconditioner module 83

IDABBDCommFn

Definition typedef int (*IDABBDCommFn) (sunindextype Nlocal, realtype tt,
N_Vector yy, N_Vector yp, void *user_data);

Purpose This Gcomm function performs all inter-processor communications necessary for the ex-
ecution of the Gres function above, using the input vectors yy and yp.

Arguments Nlocal is the local vector length.

tt is the value of the independent variable.
vy is the dependent variable.
yp is the derivative of the dependent variable.

user_data is a pointer to user data, the same as the user_data parameter passed to
IDASetUserData.

Return value An IDABBDCommFn function type should return 0 to indicate success, 1 for a recoverable
error, or -1 for a non-recoverable error.

Notes The Gcomm function is expected to save communicated data in space defined within the
structure user_data.

Each call to the Gcomm function is preceded by a call to the residual function res with
the same (tt, yy, yp) arguments. Thus Gcomm can omit any communications done by
res if relevant to the evaluation of Gres. If all necessary communication was done in
res, then Gcomm = NULL can be passed in the call to IDABBDPrecInit (see below).

Besides the header files required for the integration of the DAE problem (see §4.3), to use the
IDABBDPRE module, the main program must include the header file ida_bbdpre.h which declares the
needed function prototypes.

The following is a summary of the usage of this module and describes the sequence of calls in
the user main program. Steps that are unchanged from the user main program presented in §4.4 are
grayed-out.

1. Initialize MPI

2. Set problem dimensions etc.
3. Set vectors of initial values

4. Create IDA object

5. Initialize 1DA solver

6. Specify integration tolerances

7. Create linear solver object

When creating the iterative linear solver object, specify the use of left preconditioning (PREC_LEFT)
as IDA only supports left preconditioning.

8. Set linear solver optional inputs
9. Attach linear solver module

10. Set optional inputs
Note that the user should not overwrite the preconditioner setup function or solve function through
calls to idIDASetPreconditioner optional input function.

11. Initialize the IDABBDPRE preconditioner module

Specify the upper and lower bandwidths mudqg, m1dq and mukeep, mlkeep and call

84

Using IDA for C Applications

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

flag = IDABBDPrecInit(ida_mem, Nlocal, mudq, mldqg,
mukeep, mlkeep, dq.rel_yy, Gres, Gcomm);

to allocate memory and initialize the internal preconditioner data. The last two arguments of
IDABBDPrecInit are the two user-supplied functions described above.

Create nonlinear solver object
Attach nonlinear solver module

Set nonlinear solver optional inputs
Correct initial values

Specify rootfinding problem
Advance solution in time

Get optional outputs

Additional optional outputs associated with IDABBDPRE are available by way of two routines
described below, IDABBDPrecGetWorkSpace and IDABBDPrecGetNumGfnEvals.

Deallocate memory for solution vectors
Free solver memory

Free nonlinear solver memory

Free linear solver memory

Finalize MPI

The user-callable functions that initialize (step 11 above) or re-initialize the IDABBDPRE preconditioner
module are described next.

| IDABBDPrecInit |

Call flag = IDABBDPrecInit(ida_mem, Nlocal, mudq, mldq,

mukeep, mlkeep, dq-rel_yy, Gres, Gcomm);

Description The function IDABBDPrecInit initializes and allocates (internal) memory for the ID-

ABBDPRE preconditioner.

Arguments idamem (void *) pointer to the IDA memory block.

Nlocal (sunindextype) local vector dimension.

mudq (sunindextype) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mldq (sunindextype) lower half-bandwidth to be used in the difference-quotient
Jacobian approximation.

mukeep (sunindextype) upper half-bandwidth of the retained banded approximate
Jacobian block.

mlkeep (sunindextype) lower half-bandwidth of the retained banded approximate
Jacobian block.

dg-rel_yy (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dg_rel_yy= v/unit roundoff, which
can be specified by passing dg_rel_yy= 0.0.

Gres (IDABBDLocalFn) the C function which computes the local residual approx-
imation G(t,y,9).

4.7 A parallel band-block-diagonal preconditioner module 85

Gcomm (IDABBDCommFn) the optional C function which performs all inter-process
communication required for the computation of G(t,y,).

Return value The return value flag (of type int) is one of

IDALS_SUCCESS The call to IDABBDPrecInit was successful.
IDALS MEM_NULL The ida_mem pointer was NULL.

IDALS_MEM FAIL A memory allocation request has failed.
IDALS_LMEM NULL An IDALS linear solver memory was not attached.

IDALS_ILL_INPUT The supplied vector implementation was not compatible with the
block band preconditioner.

Notes If one of the half-bandwidths mudq or mldq to be used in the difference-quotient cal-
culation of the approximate Jacobian is negative or exceeds the value Nlocal—1, it is
replaced by 0 or Nlocal—1 accordingly.

The half-bandwidths mudq and mldq need not be the true half-bandwidths of the Jaco-
bian of the local block of G, when smaller values may provide a greater efficiency.

Also, the half-bandwidths mukeep and mlkeep of the retained banded approximate
Jacobian block may be even smaller, to reduce storage and computation costs further.

For all four half-bandwidths, the values need not be the same on every processor.
F2003 Name FIDABBDPrecInit

The IDABBDPRE module also provides a reinitialization function to allow for a sequence of prob-
lems of the same size, with the same linear solver choice, provided there is no change in local N,
mukeep, or mlkeep. After solving one problem, and after calling IDAReInit to re-initialize IDA for a
subsequent problem, a call to IDABBDPrecReInit can be made to change any of the following: the
half-bandwidths mudg and mldq used in the difference-quotient Jacobian approximations, the relative
increment dq-rel_yy, or one of the user-supplied functions Gres and Gcomm. If there is a change in
any of the linear solver inputs, an additional call to the “Set” routines provided by the SUNLINSOL
module, and/or one or more of the corresponding IDASet#*** functions, must also be made (in the
proper order).

| IDABBDPrecReInit |
Call flag = IDABBDPrecRelnit(ida mem, mudq, mldq, dq-rel_yy);

Description The function IDABBDPrecReInit reinitializes the IDABBDPRE preconditioner.

Arguments idamem (void *) pointer to the IDA memory block.
mudq (sunindextype) upper half-bandwidth to be used in the difference-quotient
Jacobian approximation.
mldq (sunindextype) lower half-bandwidth to be used in the difference-quotient
Jacobian approximation.

dg-rel_yy (realtype) the relative increment in components of y used in the difference
quotient approximations. The default is dq_-rel_yy = v unit roundoff, which
can be specified by passing dg_rel_yy = 0.0.
Return value The return value flag (of type int) is one of
IDALS_SUCCESS The call to IDABBDPrecReInit was successful.
IDALS_MEM_NULL The ida_mem pointer was NULL.
IDALS_LMEM NULL An IDALS linear solver memory was not attached.
IDALS_PMEM NULL The function IDABBDPrecInit was not previously called.
Notes If one of the half-bandwidths mudq or mldq is negative or exceeds the value Nlocal—1,
it is replaced by 0 or Nlocal—1, accordingly.
F2003 Name FIDABBDPrecRelnit

The following two optional output functions are available for use with the IDABBDPRE module:

86

Using IDA for C Applications

IDABBDPrecGetWorkSpace

Call

Description

Arguments

Return value

Notes

F2003 Name

flag = IDABBDPrecGetWorkSpace(idamem, &lenrwBBDP, &leniwBBDP);

The function IDABBDPrecGetWorkSpace returns the local sizes of the IDABBDPRE real
and integer workspaces.

idamem (void *) pointer to the IDA memory block.

lenrwBBDP (long int) local number of real values in the IDABBDPRE workspace.
leniwBBDP (long int) local number of integer values in the IDABBDPRE workspace.
The return value flag (of type int) is one of

IDALS_SUCCESS The optional output value has been successfully set.
IDALS MEM NULL The ida_mem pointer was NULL.

IDALS_PMEM_NULL The IDABBDPRE preconditioner has not been initialized.

The workspace requirements reported by this routine correspond only to memory allo-
cated within the IDABBDPRE module (the banded matrix approximation, banded SUN-
LINSOL object, temporary vectors). These values are local to each process.

The workspaces referred to here exist in addition to those given by the corresponding
function IDAGetLinWorkSpace.

FIDABBDPrecGetWorkSpace

’IDABBDPreCGetNumenEvals‘

Call

Description

Arguments

Return value

F2003 Name

flag = IDABBDPrecGetNumGfnEvals(ida_mem, &ngevalsBBDP);

The function IDABBDPrecGetNumGfnEvals returns the cumulative number of calls to
the user Gres function due to the finite difference approximation of the Jacobian blocks
used within IDABBDPRE’s preconditioner setup function.

ida mem (void *) pointer to the IDA memory block.
ngevalsBBDP (long int) the cumulative number of calls to the user Gres function.
The return value flag (of type int) is one of

IDALS_SUCCESS The optional output value has been successfully set.
IDALS MEM NULL The ida_mem pointer was NULL.
IDALS_PMEM NULL The IDABBDPRE preconditioner has not been initialized.

FIDABBDPrecGetNumGfnEvals

In addition to the ngevalsBBDP Gres evaluations, the costs associated with IDABBDPRE also include
nlinsetups LU factorizations, nlinsetups calls to Gcomm, npsolves banded backsolve calls, and
nrevalsLS residual function evaluations, where nlinsetups is an optional IDA output (see §4.5.10.2),
and npsolves and nrevalsLS are linear solver optional outputs (see §4.5.10.5).

Chapter 5

Using IDA for Fortran Applications

A Fortran 2003 module (fida-mod) as well as a Fortran 77 style interface (FIDA) are provided to
support the use of IDA, for the solution of DAE systems in a mixed Fortran/C setting. While IDA is
written in C, it is assumed here that the user’s calling program and user-supplied problem-defining
routines are written in Fortran.

5.1 IDA Fortran 2003 Interface Module

The fida_mod Fortran module defines interfaces to most IDA C functions using the intrinsic iso_c_binding
module which provides a standardized mechanism for interoperating with C. All interfaced functions
are named after the corresponding C function, but with a leading ‘F’. For example, the IDA func-
tion IDACreate is interfaced as FIDACreate. Thus, the steps to use IDA and the function calls
in Fortran 2003 are identical (ignoring language differences) to those in C. The C functions with
Fortran 2003 interfaces indicate this in their description in Chapter 4. The Fortran 2003 IDA inter-
face module can be accessed by the use statement, i.e. use fida mod, and linking to the library
libsundials_fida mod.lib in addition to libsundials_ida.l:b.

The Fortran 2003 interface modules were generated with SWIG Fortran, a fork of SWIG [37].
Users who are interested in the SWIG code used in the generation process should contact the SUNDIALS
development team.

5.1.1 SUNDIALS Fortran 2003 Interface Modules

All of the generic SUNDIALS modules provide Fortran 2003 interface modules. Many of the generic
module implementations provide Fortran 2003 interfaces (a complete list of modules with Fortran
2003 interfaces is given in Table 5.1). A module can be accessed with the use statement, e.g. use
fnvector_openmp mod, and linking to the Fortran 2003 library in addition to the C library, e.g.
libsundials_fnvecpenmp mod.lib and 1libsundials_nvecopenmp.lib.

The Fortran 2003 interfaces leverage the iso_c_binding module and the bind(C) attribute to
closely follow the suNDIALS C API (ignoring language differences). The generic SUNDIALS structures,
e.g. N_Vector, are interfaced as Fortran derived types, and function signatures are matched but with
an F prepending the name, e.g. FN_VConst instead of N_VConst. Constants are named exactly as they
are in the C API. Accordingly, using SUNDIALS via the Fortran 2003 interfaces looks just like using
it in C. Some caveats stemming from the language differences are discussed in the section 5.1.3. A
discussion on the topic of equivalent data types in C and Fortran 2003 is presented in section 5.1.2.

Further information on the Fortran 2003 interfaces specific to modules is given in the NVECTOR,
SUNMATRIX, SUNLINSOL, and SUNNONLINSOL alongside the C documentation (chapters 7, 8, 9, and
10 respectively). For details on where the Fortran 2003 module (.mod) files and libraries are installed
see Appendix A.

88 Using IDA for Fortran Applications

Table 5.1: Summary of Fortran 2003 interfaces for shared SUNDIALS modules.

Module Fortran 2003 Module Name
NVECTOR fsundials_nvector_mod
NVECTOR_SERIAL fnvector_serial mod
NVECTOR_PARALLEL fnvector_parallel mod
NVECTOR_OPENMP fnvector_openmp_mod
NVECTOR_PTHREADS fnvector_pthreads_mod
NVECTOR_PARHYP Not interfaced
NVECTOR_PETSC Not interfaced
NVECTOR_CUDA Not interfaced

NVECTOR_RAJA Not interfaced
NVECTOR_MANYVECTOR fnvector_manyvector_mod
NVECTOR_MPIMANYVECTOR | fnvector mpimanyvector_mod
NVECTOR_MPIPLUSX fnvector mpiplusx_mod
SUNMatrix fsundials_matrix_mod
SUNMATRIX_BAND fsunmatrix_band _mod
SUNMATRIX_DENSE fsunmatrix_dense_mod
SUNMATRIX_SPARSE fsunmatrix_sparse_mod
SUNLinearSolver fsundials_linearsolver_mod
SUNLINSOL_BAND fsunlinsol_band_mod
SUNLINSOL_DENSE fsunlinsol_dense_mod
SUNLINSOL_LAPACKBAND Not interfaced
SUNLINSOL_LAPACKDENSE Not interfaced

SUNLINSOL_KLU fsunlinsol _klu_mod
SUNLINSOL_SUPERLUMT Not interfaced
SUNLINSOL_SUPERLUDIST Not interfaced
SUNLINSOL_SPGMR fsunlinsol_spgmr_mod
SUNLINSOL_SPFGMR fsunlinsol_spfgmr_mod
SUNLINSOL_SPBCGS fsunlinsol_spbcgs_mod
SUNLINSOL_SPTFQMR fsunlinsol_sptfqgmr_mod
SUNLINSOL_PCG fsunlinsol_pcg_mod
SUNNonlinearSolver fsundials_nonlinearsolver_mod
SUNNONLINSOL_NEWTON fsunnonlinsol newton_mod
SUNNONLINSOL_FIXEDPOINT | fsunnonlinsol_fixedpoint_mod

5.1.2 Data Types

Generally, the Fortran 2003 type that is equivalent to the C type is what one would expect. Primitive
types map to the iso_c_binding type equivalent. SUNDIALS generic types map to a Fortran derived
type. However, the handling of pointer types is not always clear as they can depend on the parameter
direction. Table 5.2 presents a summary of the type equivalencies with the parameter direction in
mind.

Currently, the Fortran 2003 interfaces are only compatible with SUNDIALS builds where the realtype
is double precision and the sunindextype size is 64-bits.

5.1.3 Notable Fortran/C usage differences

While the Fortran 2003 interface to SUNDIALS closely follows the C API, some differences are inevitable
due to the differences between Fortran and C. In this section, we note the most critical differences.
Additionally, section 5.1.2 discusses equivalencies of data types in the two languages.

5.1 IDA Fortran 2003 Interface Module

89

Table 5.2: C/Fortran 2003 Equivalent Types

C type Parameter Direction | Fortran 2003 type

double in, inout, out, return real (c_double)

int in, inout, out, return integer(c_int)

long in, inout, out, return integer(c_long)

booleantype in, inout, out, return integer(c_int)

realtype in, inout, out, return real (c_double)

sunindextype in, inout, out, return integer(c_long)

doublex* in, inout, out real(c_double), dimension(*)

doublex* return real(c_double), pointer, dimension(:)
int* in, inout, out integer(c_int), dimension(*)

int* return integer(c_int), pointer, dimension(:)
long* in, inout, out integer(c_long), dimension(*)

long* return integer(c_long), pointer, dimension(:)
realtype* in, inout, out real(c_double), dimension(*)
realtypex* return real(c_double), pointer, dimension(:)
sunindextypex* in, inout, out integer(c_long), dimension(x*)
sunindextype* return integer(c_long), pointer, dimension(:)
realtypel[] in, inout, out real(c_double), dimension(*)
sunindextype[] in, inout, out integer(c_long), dimension(*)
N_Vector in, inout, out type (N_Vector)

N_Vector return type(N_Vector), pointer

SUNMatrix in, inout, out type (SUNMatrix)

SUNMatrix return type (SUNMatrix), pointer
SUNLinearSolver in, inout, out type (SUNLinearSolver)

SUNLinearSolver return type (SUNLinearSolver), pointer
SUNNonlinearSolver | in, inout, out type (SUNNonlinearSolver)
SUNNonlinearSolver | return type (SUNNonlinearSolver), pointer
FILE* in, inout, out, return type (c_ptr)

voidx* in, inout, out, return type (c_ptr)

T*x in, inout, out, return type(c_ptr)

Tokokok in, inout, out, return type(c_ptr)

JEEE S in, inout, out, return type(c_ptr)

5.1.3.1

Creating generic SUNDIALS objects

In the C API a generic SUNDIALS object, such as an N_Vector, is actually a pointer to an underlying
C struct. However, in the Fortran 2003 interface, the derived type is bound to the C struct, not the
pointer to the struct. E.g., type(N_Vector) is bound to the C struct _generic_N _Vector not the
N_Vector type. The consequence of this is that creating and declaring SUNDIALS objects in Fortran is
nuanced. This is illustrated in the code snippets below:

C code:

N_Vector x;
x = N_VNew_Serial(N);

Fortran code:

type(N_Vector), pointer :: x
x => FN_VNew_Serial(N)

Note that in the Fortran declaration, the vector is a type(N_Vector), pointer, and that the

pointer assignment operator is then used.

920 Using IDA for Fortran Applications

5.1.3.2 Arrays and pointers

Unlike in the C API, in the Fortran 2003 interface, arrays and pointers are treated differently when
they are return values versus arguments to a function. Additionally, pointers which are meant to be
out parameters, not arrays, in the C API must still be declared as a rank-1 array in Fortran. The
reason for this is partially due to the Fortran 2003 standard for C bindings, and partially due to the
tool used to generate the interfaces. Regardless, the code snippets below illustrate the differences.

C code:

N_Vector x
realtype* xdata;
long int leniw, lenrw;

x = N_VNew_Serial(N);

/* capturing a returned array/pointer */
xdata = N_VGetArrayPointer(x)

/* passing array/pointer to a function */
N_VSetArrayPointer(xdata, x)

/* pointers that are out-parameters */
N_VSpace(x, &leniw, &lenrw);

Fortran code:

type(N_Vector), pointer :: x

real(c_double), pointer :: xdataptr(:)
real(c_double) 11 xdata(N)
integer(c_long) :: leniw(1), lenrw(1)

x => FN_VNew_Serial (x)

! capturing a returned array/pointer
xdataptr => FN_VGetArrayPointer(x)

| passing array/pointer to a function
call FN_VSetArrayPointer(xdata, x)

! pointers that are out-parameters
call FN_VSpace(x, leniw, lenrw)

5.1.3.3 Passing procedure pointers and user data

Since functions/subroutines passed to SUNDIALS will be called from within C code, the Fortran proce-
dure must have the attribute bind (C). Additionally, when providing them as arguments to a Fortran
2003 interface routine, it is required to convert a procedure’s Fortran address to C with the Fortran
intrinsic c_funloc.

Typically when passing user data to a SUNDIALS function, a user may simply cast some custom
data structure as a void*. When using the Fortran 2003 interfaces, the same thing can be achieved.
Note, the custom data structure does not have to be bind (C) since it is never accessed on the C side.

C code:

MyUserData* udata;

5.1 IDA Fortran 2003 Interface Module 91

void *cvode_mem;

ierr = CVodeSetUserData(cvode_mem, udata);
Fortran code:

type (MyUserData) :: udata
type(c_ptr) :: cvode_mem

ierr = FCVodeSetUserData(cvode_mem, c_loc(udata))

On the other hand, Fortran users may instead choose to store problem-specific data, e.g. problem
parameters, within modules, and thus do not need the SUNDIALS-provided user_data pointers to
pass such data back to user-supplied functions. These users should supply the c_null_ptr input for
user_data arguments to the relevant SUNDIALS functions.

5.1.3.4 Passing NULL to optional parameters

In the suNDIALS C API some functions have optional parameters that a caller can pass NULL to. If the
optional parameter is of a type that is equivalent to a Fortran type (c_ptr) (see section 5.1.2), then a
Fortran user can pass the intrinsic c_ null_ptr. However, if the optional parameter is of a type that is
not equivalent to type (c_ptr), then a caller must provide a Fortran pointer that is dissociated. This
is demonstrated in the code example below.

C code:

SUNLinearSolver LS;
N_Vector x, b;

! SUNLinSolSolve expects a SUNMatrix or NULL
! as the second parameter.
ierr = SUNLinSolSolve(LS, NULL, x, b);

Fortran code:

type (SUNLinearSolver), pointer :: LS
type (SUNMatrix), pointer :: A
type(N_Vector), pointer :: x, b

A => null()

! SUNLinSolSolve expects a type(SUNMatrix), pointer

! as the second parameter. Therefore, we cannot

! pass a c_null_ptr, rather we pass a disassociated A.
ierr = FSUNLinSolSolve(LS, A, x, b)

5.1.3.5 Working with N_Vector arrays

Arrays of N_Vector objects are interfaced to Fortran 2003 as opaque type(c_ptr). As such, it is
not possible to directly index an array of N_Vector objects returned by the N_Vector “VectorArray”
operations, or packages with sensitivity capablities. Instead, SUNDIALS provides a utility function
FN_VGetVecAtIndexVectorArray that can be called for accessing a vector in a vector array. The
example below demonstrates this:

C code:

92 Using IDA for Fortran Applications

N_Vector x;
N_Vector* vecs;

vecs = N_VCloneVectorArray(count, x);
for (int i=0; i < count; ++i)
N_VConst (vecs[i]);

Fortran code:

type(N_Vector), pointer :: x, xi
type(c_ptr) 11 vecs

vecs = FN_VCloneVectorArray(count, x)

do index, count
xi => FN_VGetVecAtIndexVectorArray(vecs, index)
call FN_VConst (xi)

enddo

SUNDIALS also provides the functions FN_VSetVecAtIndexVectorArray and FN_VNewVectorArray
for working with N_Vector arrays. These functions are particularly useful for users of the Fortran
interface to the NVECTOR_MANYVECTOR or NVECTOR_MPIMANYVECTOR when creating the subvector
array. Both of these functions along with FN_VGetVecAtIndexVectorArray are further described in
Chapter 7.1.6.

5.1.3.6 Providing file pointers

Expert SUNDIALS users may notice that there are a few advanced functions in the SUNDIALS C API
that take a FILE * argument. Since there is no portable way to convert between a Fortran file descrip-
tor and a C file pointer, SUNDIALS provides two utility functions for creating a FILE * and destroying
it. These functions are defined in the module fsundials_futils_mod.

FSUNDIALSFileren‘

Call fp = FSUNDIALSFileOpen(filename, mode)
Description The function allocates a FILE * by calling the C function fopen.

Arguments filename (character(kind=C_CHAR, len=%)) - the path to the file to open
mode (character (kind=C_CHAR, len=%)) - the mode string given to fopen It
should begin with one of the following characters:
“r” - open text file for reading
“r+” - open text file for reading and writing
“w” - truncate text file to zero length or create it for writing
“w+” - open text file for reading or writing, create it if it does not exist

W

a” - open for appending, see documentation of “fopen® for your sys-
tem/compiler

“a+” - open for reading and appending, see documentation for “fopen*
for your system/compiler

Return value This returns a type (C_.PTR) which is a FILE* in C. If it is NULL, then there was an error
opening the file.

5.2 FIDA, an Interface Module for FORTRAN Applications 93

| FSUNDIALSFileClose]
Call call FSUNDIALSFileClose(£fp)

Description The function deallocates a FILEx by calling the C function fclose.
Arguments fp (type(C_PTR)) - the file pointer (type FILE* in C)

Return value None

5.1.4 Important notes on portability

The SUNDIALS Fortran 2003 interface should be compatible with any compiler supporting the Fortran
2003 ISO standard. However, it has only been tested and confirmed to be working with GNU Fortran
4.9+ and Intel Fortran 18.0.1+.

Upon compilation of SUNDIALS, Fortran module (.mod) files are generated for each Fortran 2003
interface. These files are highly compiler specific, and thus it is almost always necessary to compile a
consuming application with the same compiler used to generate the modules.

5.2 FIDA, an Interface Module for FORTRAN Applications

The FIDA interface module is a package of C functions which support the use of the 1DA solver,
for the solution of DAE systems, in a mixed FORTRAN/C setting. While IDA is written in C, it is
assumed here that the user’s calling program and user-supplied problem-defining routines are written
in FORTRAN. This package provides the necessary interface to IDA for all supplied serial and parallel
NVECTOR implementations.

5.3 Important note on portability

In this package, the names of the interface functions, and the names of the FORTRAN user routines
called by them, appear as dummy names which are mapped to actual values by a series of definitions
in the header files. By default, those mapping definitions depend in turn on the C macro F77_FUNC
defined in the header file sundials_config.h. The mapping defined by F77_FUNC in turn transforms
the C interface names to match the name-mangling approach used by the supplied Fortran compiler.

By “name-mangling”, we mean that due to the case-independent nature of the FORTRAN language,
FORTRAN compilers convert all subroutine and object names to use either all lower-case or all upper-
case characters, and append either zero, one or two underscores as a prefix or suffix to the name. For
example, the FORTRAN subroutine MyFunction() will be changed to one of myfunction, MYFUNCTION,
myfunction__, MYFUNCTION_, and so on, depending on the FORTRAN compiler used.

SUNDIALS determines this name-mangling scheme at configuration time (see Appendix A).

5.4 Fortran Data Types

Throughout this documentation, we will refer to data types according to their usage in C. The equiv-
alent types to these may vary, depending on your computer architecture and on how SUNDIALS was
compiled (see Appendix A). A FORTRAN user should first determine the equivalent types for their
architecture and compiler, and then take care that all arguments passed through this FORTRAN/C
interface are declared of the appropriate type.

Integers: While SUNDIALS uses the configurable sunindextype type as the integer type for vector
and matrix indices for its C code, the FORTRAN interfaces are more restricted. The sunindextype
is only used for index values and pointers when filling sparse matrices. As for C, the sunindextype
can be configured to be a 32- or 64-bit signed integer by setting the variable SUNDIALS_INDEX_TYPE
at compile time (See Appendix A). The default value is int64_t. A FORTRAN user should set this
variable based on the integer type used for vector and matrix indices in their FORTRAN code. The
corresponding FORTRAN types are:

94 Using IDA for Fortran Applications

e int32 t — equivalent to an INTEGER or INTEGER*4 in FORTRAN

e int64_t — equivalent to an INTEGER*8 in FORTRAN

In general, for the FORTRAN interfaces in SUNDIALS, flags of type int, vector and matrix lengths,
counters, and arguments to *SETIN() functions all have long int type, and sunindextype is only
used for index values and pointers when filling sparse matrices. Note that if an F90 (or higher) user
wants to find out the value of sunindextype, they can include sundials_fconfig.h.

Real numbers: As discussed in Appendix A, at compilation SUNDIALS allows the configura-
tion option SUNDIALS_PRECISION, that accepts values of single, double or extended (the default is
double). This choice dictates the size of a realtype variable. The corresponding FORTRAN types for
these realtype sizes are:

e single — equivalent to a REAL or REAL*4 in FORTRAN
e double — equivalent to a DOUBLE PRECISION or REAL*8 in FORTRAN

e extended — equivalent to a REAL*16 in FORTRAN

5.4.1 FIDA routines
The user-callable functions, with the corresponding IDA functions, are as follows:
e Interface to the NVECTOR modules

— FNVINITS (defined by NVECTOR_SERIAL) interfaces to N_VNewEmpty_Serial.

— FNVINITP (defined by NVECTOR_PARALLEL) interfaces to N_-VNewEmpty Parallel.

— FNVINITOMP (defined by NVECTOR_OPENMP) interfaces to N_VNewEmpty_OpenMP.

— FNVINITPTS (defined by NVECTOR_-PTHREADS) interfaces to N_-VNewEmpty_Pthreads.

e Interface to the SUNMATRIX modules

— FSUNBANDMATINIT (defined by SUNMATRIX_BAND) interfaces to SUNBandMatrix.
— FSUNDENSEMATINIT (defined by SUNMATRIX_DENSE) interfaces to SUNDenseMatrix.
— FSUNSPARSEMATINIT (defined by SUNMATRIX_SPARSE) interfaces to SUNSparseMatrix.

e Interface to the SUNLINSOL modules

— FSUNBANDLINSOLINIT (defined by SUNLINSOL_BAND) interfaces to SUNLinSol_Band.

— FSUNDENSELINSOLINIT (defined by SUNLINSOL_DENSE) interfaces to SUNLinSol Dense.
— FSUNKLUINIT (defined by SUNLINSOL_KLU) interfaces to SUNLinSol _KLU.

— FSUNKLUREINIT (defined by SUNLINSOL_KLU) interfaces to SUNLinSol KLUReinit.

— FSUNLAPACKBANDINIT (defined by SUNLINSOL_LAPACKBAND) interfaces to
SUNLinSol_LapackBand.

— FSUNLAPACKDENSEINIT (defined by SUNLINSOL_LAPACKDENSE) interfaces to
SUNLinSol_LapackDense.

— FSUNPCGINIT (defined by SUNLINSOL_PCG) interfaces to SUNLinSol_PCG.

— FSUNSPBCGSINIT (defined by SUNLINSOL_SPBCGS) interfaces to SUNLinSol_SPBCGS.

— FSUNSPFGMRINIT (defined by SUNLINSOL_SPFGMR) interfaces to SUNLinSol_SPFGMR.

— FSUNSPGMRINIT (defined by SUNLINSOL_SPGMR) interfaces to SUNLinSol_SPGMR.

— FSUNSPTFQMRINIT (defined by SUNLINSOL_SPTFQMR) interfaces to SUNLinSol SPTFQMR.

— FSUNSUPERLUMTINIT (defined by SUNLINSOL_SUPERLUMT) interfaces to
SUNLinSol_SuperLUMT.

5.4 Fortran Data Types 95

e Interface to the main IDA module
— FIDAMALLOC interfaces to IDACreate, IDASetUserData, IDAInit, IDASStolerances, and
IDASVtolerances.
— FIDAREINIT interfaces to IDAReInit and IDASStolerances/IDASVtolerances.
— FIDASETIIN, FIDASETVIN, and FIDASETRIN interface to IDASet* functions.
— FIDATOLREINIT interfaces to IDASStolerances/IDASVtolerances.
— FIDACALCIC interfaces to IDACalcIC.
— FIDAEWTSET interfaces to IDAWFtolerances.

— FIDASOLVE interfaces to IDASolve, IDAGet* functions, and to the optional output functions
for the selected linear solver module.

— FIDAGETDKY interfaces to IDAGetDky.
— FIDAGETERRWEIGHTS interfaces to IDAGetErrWeights.
— FIDAGETESTLOCALERR interfaces to IDAGetEstLocalErrors.

— FIDAFREE interfaces to IDAFree.

e Interface to the IDALS module

— FIDALSINIT interfaces to IDASetLinearSolver.

— FIDALSSETEPSLIN interfaces to IDASetEpsLin

— FIDALSSETJAC interfaces to IDASetJacTimes.

— FIDALSSETPREC interfaces to IDASetPreconditioner.

— FIDADENSESETJAC interfaces to IDASetJacFn.

— FIDABANDSETJAC interfaces to IDASetJacFn.

— FIDASPARSESETJAC interfaces to IDASetJacFn.

The user-supplied functions, each listed with the corresponding internal interface function which

calls it (and its type within IDA), are as follows:

FIDA routine IDA function IDA type of
(FORTRAN, user-supplied) || (C, interface) interface function
FIDARESFUN FIDAresfn IDAResFn

FIDAEWT FIDAEwtSet IDAEwtFn

FIDADJAC FIDADenseJac IDALsJacFn
FIDABJAC FIDABandJac IDALsJacFn
FIDASPJAC FIDASparseJac | IDALsJacFn
FIDAPSOL FIDAPSol IDALsPrecSolveFn
FIDAPSET FIDAPSet IDALsPrecSetupFn
FIDAJTIMES FIDAJtimes IDALsJacTimesVecFn
FIDAJTSETUP FIDAJTSetup IDALsJacTimesSetupFn

In contrast to the case of direct use of IDA, and of most FORTRAN DAE solvers, the names of all user-
supplied routines here are fixed, in order to maximize portability for the resulting mixed-language
program.

96 Using IDA for Fortran Applications

5.4.2 Usage of the FIDA interface module

The usage of FIDA requires calls to a variety of interface functions, depending on the method options
selected, and one or more user-supplied routines which define the problem to be solved. These function
calls and user routines are summarized separately below. Some details are omitted, and the user is
referred to the description of the corresponding IDA functions for information on the arguments of
any given user-callable interface routine, or of a given user-supplied function called by an interface
function. The usage of FIDA for rootfinding, and usage of FIDA with preconditioner modules, are each
described in later sections.

1. Residual function specification

The user must, in all cases, supply the following FORTRAN routine

SUBROUTINE FIDARESFUN (T, Y, YP, R, IPAR, RPAR, IER)
DIMENSION Y(*), YP(*), R(*), IPAR(*), RPAR(%)

It must set the R array to F(¢,y,y), the residual function of the DAE system, as a function of T
=t and the arrays Y = y and YP = ¢. The arrays IPAR (of integers) and RPAR (of reals) contain
user data and are the same as those passed to FIDAMALLOC. It should return IER = 0 if it was
successful, IER = 1 if it had a recoverable failure, or IER = -1 if it had a non-recoverable failure.

2. NVECTOR module initialization

If using one of the NVECTOR modules supplied with SUNDIALS, the user must make a call of the
form

CALL FNVINIT*#**(...)

in which the name and call sequence are as described in the appropriate section of Chapter 7.

3. SUNMATRIX module initialization

In the case of a stiff system, the implicit BDF method involves the solution of linear systems related
to the Jacobian of the DAE system. If using a Newton iteration with the direct SUNLINSOL linear
solver module and one of the SUNMATRIX modules supplied with SUNDIALS, the user must make
a call of the form

CALL FSUN***xMATINIT(...)

in which the name and call sequence are as described in the appropriate section of Chapter 8.
Note that the dense, band, or sparse matrix options are usable only in a serial or multi-threaded
environment.

4. SUNLINSOL module initialization

If using a Newton iteration with one of the SUNLINSOL linear solver modules supplied with SUN-
DIALS, the user must make a call of the form

CALL FSUNBANDLINSOLINIT(...)
CALL FSUNDENSELINSOLINIT(...)
CALL FSUNKLUINIT(...)

CALL FSUNLAPACKBANDINIT(...)
CALL FSUNLAPACKDENSEINIT(...)
CALL FSUNPCGINIT(...)

CALL FSUNSPBCGSINIT(...)

CALL FSUNSPFGMRINIT(...)

CALL FSUNSPGMRINIT(...)

5.4 Fortran Data Types 97

CALL FSUNSPTFQMRINIT(...)
CALL FSUNSUPERLUMTINIT(...)

in which the call sequence is as described in the appropriate section of Chapter 9. Note that the
dense, band, or sparse solvers are usable only in a serial or multi-threaded environment.

Once one of these solvers has been initialized, its solver parameters may be modified using a call
to the functions

CALL FSUNKLUSETORDERINGC(...)
CALL FSUNSUPERLUMTSETORDERING(...)
CALL FSUNPCGSETPRECTYPEC(...)
CALL FSUNPCGSETMAXL(...)

CALL FSUNSPBCGSSETPRECTYPE(...)
CALL FSUNSPBCGSSETMAXL(...)

CALL FSUNSPFGMRSETGSTYPE(...)
CALL FSUNSPFGMRSETPRECTYPE(...)
CALL FSUNSPGMRSETGSTYPE(...)
CALL FSUNSPGMRSETPRECTYPE(...)
CALL FSUNSPTFQMRSETPRECTYPE(...)
CALL FSUNSPTFQMRSETMAXL(...)

where again the call sequences are described in the appropriate sections of Chapter 9.

5. Problem specification

To set various problem and solution parameters and allocate internal memory, make the following
call:

FIDAMALLOC

Call CALL FIDAMALLOC(TO, YO, YPO, IATOL, RTOL, ATOL,
& IOUT, ROUT, IPAR, RPAR, IER)
Description This function provides required problem and solution specifications, specifies op-
tional inputs, allocates internal memory, and initializes IDA.
Arguments TO is the initial value of ¢.
YO is an array of initial conditions for y.
YPO is an array of initial conditions for .
TATOL specifies the type for absolute tolerance ATOL: 1 for scalar or 2 for array. If
TATOL= 3, the arguments RTOL and ATOL are ignored and the user is expected
to subsequently call FIDAEWTSET and provide the function FIDAEWT.
RTOL is the relative tolerance (scalar).
ATOL is the absolute tolerance (scalar or array).
I0UT is an integer array of length at least 21 for integer optional outputs.
ROUT is a real array of length at least 6 for real optional outputs.
IPAR is an integer array of user data which will be passed unmodified to all user-
provided routines.
RPAR is a real array of user data which will be passed unmodified to all user-
provided routines.
Return value IER is a return completion flag. Values are 0 for successful return and —1 otherwise.
See printed message for details in case of failure.
Notes The user integer data arrays IOUT and IPAR must be declared as INTEGER*4 or
INTEGER*8 according to the C type long int.
Modifications to the user data arrays IPAR and RPAR inside a user-provided routine
will be propagated to all subsequent calls to such routines.

98

Using IDA for Fortran Applications

The optional outputs associated with the main IDA integrator are listed in Table 5.4.

As an alternative to providing tolerances in the call to FIDAMALLOC, the user may provide a routine
to compute the error weights used in the WRMS norm evaluations. If supplied, it must have the
following form:

SUBROUTINE FIDAEWT (Y, EWT, IPAR, RPAR, IER)
DIMENSION Y(*), EWT(*), IPAR(x%), RPAR(x*)

It must set the positive components of the error weight vector EWT for the calculation of the
WRMS norm of Y. On return, set IER = 0 if FIDAEWT was successful, and nonzero otherwise. The
arrays IPAR (of integers) and RPAR (of reals) contain user data and are the same as those passed
to FIDAMALLOC.

If the FIDAEWT routine is provided, then, following the call to FIDAMALLOC, the user must make
the call:

CALL FIDAEWTSET (FLAG, IER)

with FLAG # 0 to specify use of the user-supplied error weight routine. The argument IER is an
error return flag, which is 0 for success or non-zero if an error occurred.

. Set optional inputs

Call FIDASETIIN, FIDASETRIN, and/or FIDASETVIN to set desired optional inputs, if any. See §5.5
for details.

. Linear solver interface specification

The variable-order, variable-coefficient BDF method used by IDA involves the solution of linear
systems related to the system Jacobian J = OF /0y + adF/dy. See Eq. (2.4). To attach the linear
solver (and optionally the matrix) objects initialized in steps 3 and 4 above, the user of FIDA
must initialize the IDALS linear solver interface. To attach any SUNLINSOL object (and optional
SUNMATRIX object) to IDA, then following calls to initialize the SUNLINSOL (and SUNMATRIX)
object(s) in steps 3 and 4 above, the user must make the call:

CALL FIDALSINIT(IER)

IER is an error return flag set on 0 on success or —1 if a memory failure occurred.

The previous routines FIDADLSINIT and FIDASPILSINIT are now wrappers for this routine, and
may still be used for backward-compatibility. However, these will be deprecated in future releases,
so we recommend that users transition to the new routine name soon.

IDALS with dense Jacobian matrix

As an option when using the IDALS interface with the SUNLINSOL_DENSE or
SUNLINSOL_LAPACKDENSE linear solvers, the user may supply a routine that computes a dense
approximation of the system Jacobian J. If supplied, it must have the following form:

SUBROUTINE FIDADJAC (NEQ, T, Y, YP, R, DJAC, CJ, EWT, H,

& IPAR, RPAR, WK1, WK2, WK3, IER)
DIMENSION Y(*), YP(*), R(*), EWT(x), DJAC(NEQ,*),
& IPAR(*), RPAR(*), WK1(*), WK2(*), WK3(*)

This routine must compute the Jacobian and store it columnwise in DJAC. The vectors WK1, WK2,
and WK3 of length NEQ are provided as work space for use in FIDADJAC. The input arguments T, Y,
YP, R, and CJ are the current values of t, y, ¥, F(t,y,9), and «, respectively. The arrays IPAR (of

5.4 Fortran Data Types 99

integers) and RPAR (of reals) contain user data and are the same as those passed to FIDAMALLOC.
NOTE: The argument NEQ has a type consistent with C type long int even in the case when the
LAPACK dense solver is to be used.

If the user’s FIDADJAC uses difference quotient approximations, it may need to use the error weight
array EWT and current stepsize H in the calculation of suitable increments. It may also need the
unit roundoff, which can be obtained as the optional output ROUT(6), passed from the calling
program to this routine using COMMON.

If the FIDADJAC routine is provided, then, following the call to FIDALSINIT the user must make
the call:

CALL FIDADENSESETJAC (FLAG, IER)

with FLAG # 0 to specify use of the user-supplied Jacobian approximation. The argument IER is
an error return flag, which is 0 for success or non-zero if an error occurred.

IDALS with band Jacobian matrix

As an option when using the IDALS interface with the SUNLINSOL_BAND or SUNLINSOL_LAPACKBAND
linear solvers, the user may supply a routine that computes a band approximation of the system
Jacobian J. If supplied, it must have the following form:

SUBROUTINE FIDABJAC(NEQ, MU, ML, MDIM, T, Y, YP, R, CJ, BJAC,

& EWT, H, IPAR, RPAR, WK1, WK2, WK3, IER)
DIMENSION Y(*), YP(*), R(*), EWT(x), BJAC(MDIM,*),
& IPAR(*), RPAR(*), WK1(*), WK2(*), WK3(x)

This routine must load the MDIM by NEQ array BJAC with the Jacobian matrix at the current (¢, y,y)
in band form. Store in BJAC(k, j) the Jacobian element J; ; with k =4 — j4+MU+1 (k=1---ML +
MU + 1) and j = 1--- N. The vectors WK1, WK2, and WK3 of length NEQ are provided as work space
for use in FIDABJAC. The input arguments T, Y, YP, R, and CJ are the current values of ¢, y, v,
F(t,y,9), and «, respectively. The arrays IPAR (of integers) and RPAR (of reals) contain user data
and are the same as those passed to FIDAMALLOC. NOTE: The arguments NEQ, MU, ML, and MDIM
have a type consistent with C type long int even in the case when the LAPACK band solver is
to be used.

If the user’s FIDABJAC uses difference quotient approximations, it may need to use the error weight
array EWT and current stepsize H in the calculation of suitable increments. It may also need the
unit roundoff, which can be obtained as the optional output ROUT(6), passed from the calling
program to this routine using COMMON.

If the FIDABJAC routine is provided, then, following the call to FIDALSINIT, the user must make
the call:

CALL FIDABANDSETJAC (FLAG, IER)

with FLAG # 0 to specify use of the user-supplied Jacobian approximation. The argument IER is
an error return flag, which is 0 for success or non-zero if an error occurred.

IDALS with sparse Jacobian matrix

When using the IDALS interface with the SUNLINSOL_KLU or SUNLINSOL_SUPERLUMT linear solvers,
the user must supply the FIDASPJAC routine that computes a compressed-sparse-column (CSC)
or compressed-sparse-row (CSR) approximation of the system Jacobian J = 0F/dy + ¢;0F/0y.
If supplied, it must have the following form:

SUBROUTINE FIDASPJAC(T, CJ, Y, YP, R, N, NNZ, JDATA, JINDEXVALS,
& JINDEXPTRS, H, IPAR, RPAR, WK1, WK2, WK3, IER)

100 Using IDA for Fortran Applications

It must load the N by N compressed sparse column [or compressed sparse row] matrix with storage
for NNZ nonzeros, stored in the arrays JDATA (nonzero values), JINDEXVALS (row [or column] indices
for each nonzero), JINDEXPTRS (indices for start of each column [or row]), with the Jacobian matrix
at the current (¢,y) in CSC [or CSR] form (see sunmatrix_sparse.h for more information). The
arguments are T, the current time; CJ, scalar in the system proportional to the inverse step
size; Y, an array containing state variables; YP, an array containing state derivatives; R, an array
containing the system nonlinear residual; N, the number of matrix rows/columns in the Jacobian;
NNZ, allocated length of nonzero storage; JDATA, nonzero values in the Jacobian (of length NNZ);
JINDEXVALS, row [or column] indices for each nonzero in Jacobian (of length NNZ); JINDEXPTRS,
pointers to each Jacobian column [or row] in the two preceding arrays (of length N+1); H, the
current step size; IPAR, an array containing integer user data that was passed to FIDAMALLOC; RPAR,
an array containing real user data that was passed to FIDAMALLOC; WK#*, work arrays containing
temporary workspace of same size as Y; and IER, error return code (0 if successful, > 0 if a
recoverable error occurred, or < 0 if an unrecoverable error occurred.)

To indicate that the FIDASPJAC routine has been provided, then following the call to FIDALSINIT,
the following call must be made

CALL FIDASPARSESETJAC (IER)

The int return flag IER is an error return flag which is 0 for success or nonzero for an error.
IDALS with Jacobian-vector product

As an option when using the IDALS linear solver interface, the user may supply a routine that
computes the product of the system Jacobian J = 9F/dy + adF/dy and a given vector v. If
supplied, it must have the following form:

SUBROUTINE FIDAJTIMES(T, Y, YP, R, V, FJV, CJ, EWT, H,

& IPAR, RPAR, WK1, WK2, IER)
DIMENSION Y(*), YP(*), R(*), V(x), FIV(*), EWT (%),
& IPAR(*), RPAR(*), WK1(*), WK2(*)

This routine must compute the product vector Jv, where the vector v is stored in V, and store
the product in FJV. On return, set IER = 0 if FIDAJTIMES was successful, and nonzero otherwise.
The vectors WiK and WK2, of length NEQ, are provided as work space for use in FIDAJTIMES. The
input arguments T, Y, YP, R, and CJ are the current values of ¢, y, v, F'(¢,y,9), and «, respectively.
The arrays IPAR (of integers) and RPAR (of reals) contain user data and are the same as those
passed to FIDAMALLOC.

If the user’s FIDAJTIMES uses difference quotient approximations, it may need to use the error
weight array EWT and current stepsize H in the calculation of suitable increments. It may also need
the unit roundoff, which can be obtained as the optional output ROUT(6), passed from the calling
program to this routine using COMMON.

If the user’s Jacobian-times-vector product routine requires that any Jacobian related data be eval-
uated or preprocessed, then the following routine can be used for the evaluation and preprocessing
of this data:

SUBROUTINE FIDAJTSETUP (T, Y, YP, R, CJ, EWT, H, IPAR, RPAR, IER)
DIMENSION Y(*), YP(*), R(*), EWT(*), IPAR(*), RPAR(*)

Typically this routine will use only T, Y, and IDAYP. It should compute any necessary data for
subsequent calls to FIDAJTIMES. On return, set IER = 0 if FIDAJTSETUP was successful, and
nonzero otherwise. The arrays IPAR (of integers) and RPAR (of reals) contain user data and are
the same as those passed to FIDAMALLOC.

To indicate that the FIDAJTIMES and FIDAJTSETUP routines have been provided, then following
the call to FIDALSINIT, the following call must be made

5.4 Fortran Data Types 101

CALL FIDALSSETJAC (FLAG, IER)

with FLAG # 0. The return flag IER is O if successful, or negative if a memory error occurred.

The previous routine FIDASPILSETJAC is now a wrapper for this routine, and may still be used
for backward-compatibility. However, this will be deprecated in future releases, so we recommend
that users transition to the new routine name soon.

If the user calls FIDALSSETJAC, the routine FIDAJTSETUP must be provided, even if it is not needed,
and it must return IER=0.

IDALS with preconditioning

If user-supplied preconditioning is to be performed, the following routine must be supplied for
solution of the preconditioner linear system:

SUBROUTINE FIDAPSOL(T, Y, YP, R, RV, ZV, CJ, DELTA, EWT,

& IPAR, RPAR, IER)
DIMENSION Y(*), YP(*), R(*), RV(*), ZV(*), EWT (%),
& IPAR(*), RPAR(*)

It must solve the preconditioner linear system Pz = r, where r = RV is input, and store the solution
z in ZV. Here P is the left preconditioner. The input arguments T, Y, YP, R, and CJ are the current
values of ¢, y, ¥, F(t,y,7), and «, respectively. On return, set IER = 0 if FIDAPSOL was successful,
set IER positive if a recoverable error occurred, and set IER negative if a non-recoverable error
occurred.

The arguments EWT and DELTA are input and provide the error weight array and a scalar tolerance,
respectively, for use by FIDAPSOL if it uses an iterative method in its solution. In that case, the
residual vector p = r — Pz of the system should be made less than DELTA in weighted {5 norm, i.e.

> (pi * EWT[i])?2 < DELTA. The arrays IPAR (of integers) and RPAR (of reals) contain user data
and are the same as those passed to FIDAMALLOC.

If the user’s preconditioner requires that any Jacobian-related data be evaluated or preprocessed,
then the following routine is to be used for the evaluation and preprocessing of the preconditioner:

SUBROUTINE FIDAPSET(T, Y, YP, R, CJ, EWT, H,

& IPAR, RPAR, IER)
DIMENSION Y(*), YP(*), R(x), EWT(x),
& IPAR(*), RPAR(*)

It must perform any evaluation of Jacobian-related data and preprocessing needed for the solution
of the preconditioner linear systems by FIDAPSOL. The input arguments T, Y, YP, R, and CJ are
the current values of ¢, y, ¥, F(t,y,9), and «, respectively. On return, set IER = 0 if FIDAPSET
was successful, set IER positive if a recoverable error occurred, and set IER negative if a non-
recoverable error occurred. The arrays IPAR (of integers) and RPAR (of reals) contain user data
and are the same as those passed to FIDAMALLOC.

If the user’s FIDAPSET uses difference quotient approximations, it may need to use the error weight
array EWT and current stepsize H in the calculation of suitable increments. It may also need the
unit roundoff, which can be obtained as the optional output ROUT(6), passed from the calling
program to this routine using COMMON.

To indicate that the FIDAPSET and FIDAPSOL routines are supplied, then following the call to
FIDALSINIT, the user must call

CALL FIDALSSETPREC (FLAG, IER)

102 Using IDA for Fortran Applications

with FLAG # 0. The return flag IER is 0 if successful, or negative if a memory error occurred. In
addition, the user must supply preconditioner routines FIDAPSET and FIDAPSOL.

The previous routine FIDASPILSETPREC is now a wrapper for this routine, and may still be used
for backward-compatibility. However, this will be deprecated in future releases, so we recommend
that users transition to the new routine name soon.

If the user calls FIDALSSETPREC, the subroutine FIDAPSET must be provided, even if it is not
needed, and it must return IER = 0.

8. Correct initial values

Optionally, to correct the initial values y and/or g, make the call
CALL FIDACALCIC (ICOPT, TOUT1, IER)

(See §2.1 for details.) The arguments are as follows: ICOPT is 1 for initializing the algebraic
components of y and differential components of ¢, or 2 for initializing all of y. IER is an error
return flag, which is 0 for success, or negative for a failure (see IDACalcIC return values).

9. Problem solution

Carrying out the integration is accomplished by making calls as follows:
CALL FIDASOLVE (TOUT, T, Y, YP, ITASK, IER)

The arguments are as follows. TOUT specifies the next value of ¢ at which a solution is desired
(input). T is the value of ¢ reached by the solver on output. Y is an array containing the computed
solution vector y on output. YP is an array containing the computed solution vector ¢ on output.
ITASK is a task indicator and should be set to 1 for normal mode (overshoot TOUT and interpolate),
or to 2 for one-step mode (return after each internal step taken). IER is a completion flag and
will be set to a positive value upon successful return or to a negative value if an error occurred.
These values correspond to the IDASolve returns (see §4.5.7 and §B.2). The current values of the
optional outputs are available in I0UT and ROUT (see Table 5.4).

10. Additional solution output

After a successful return from FIDASOLVE, the routine FIDAGETDKY may be called to get interpo-
lated values of y or any derivative d¥y/dt* for k not exceeding the current method order, and for
any value of ¢ in the last internal step taken by IDA. The call is as follows:

CALL FIDAGETDKY (T, K, DKY, IER)

where T is the input value of ¢ at which solution derivative is desired, K is the derivative order,
and DKY is an array containing the computed vector y*)(¢) on return. The value of T must lie
between TCUR - HLAST and TCUR. The value of K must satisfy 0 < K <QLAST. (See the optional
outputs for TCUR, HLAST, and QLAST.) The return flag IER is set to 0 upon successful return, or to
a negative value to indicate an illegal input.

11. Problem reinitialization

To re-initialize the IDA solver for the solution of a new problem of the same size as one already
solved, make the following call:

CALL FIDAREINIT (TO, YO, YPO, IATOL, RTOL, ATOL, IER)
The arguments have the same names and meanings as those of FIDAMALLOC. FIDAREINIT performs

the same initializations as FIDAMALLOC, but does no memory allocation, using instead the existing
internal memory created by the previous FIDAMALLOC call.

5.5 FIDA optional input and output 103

Following this call, if the choice of linear solver is being changed then a user must make a call
to create the alternate SUNLINSOL module and then attach it to the IDALS interface, as shown
above. If only linear solver parameters are being modified, then these calls may be made without
re-attaching to the IDALS interface.

12. Memory deallocation

To free the internal memory created by the call to FIDAMALLOC, FIDALSINIT, FNVINIT* and
FSUN***MATINIT, make the call

CALL FIDAFREE

5.5 FIDA optional input and output

In order to keep the number of user-callable FIDA interface routines to a minimum, optional inputs
to the IDA solver are passed through only three routines: FIDASETIIN for integer optional inputs,
FIDASETRIN for real optional inputs, and FIDASETVIN for real vector (array) optional inputs. These
functions should be called as follows:

CALL FIDASETIIN(KEY, IVAL, IER)
CALL FIDASETRIN(KEY, RVAL, IER)
CALL FIDASETVIN(XEY, VVAL, IER)

where KEY is a quoted string indicating which optional input is set (see Table 5.3), IVAL is the input
integer value, RVAL is the input real value (scalar), VVAL is the input real array, and IER is an integer
return flag which is set to 0 on success and a negative value if a failure occurred. IVAL should be
declared so as to match C type long int.

When using FIDASETVIN to specify the variable types (KEY = ’ID_VEC’) the components in the
array VVAL must be 1.0 to indicate a differential variable, or 0.0 to indicate an algebraic variable. Note
that this array is required only if FIDACALCIC is to be called with ICOPT = 1, or if algebraic variables
are suppressed from the error test (indicated using FIDASETIIN with KEY = ’>SUPPRESS_ALG’). When
using FIDASETVIN to specify optional constraints on the solution vector (KEY = ’>CONSTR_VEC’) the
components in the array VVAL should be one of —2.0, —1.0, 0.0, 1.0, or 2.0. See the description of
IDASetConstraints (§4.5.8.1) for details.

The optional outputs from the IDA solver are accessed not through individual functions, but rather
through a pair of arrays, I0UT (integer type) of dimension at least 21, and ROUT (real type) of dimension
at least 6. These arrays are owned (and allocated) by the user and are passed as arguments to
FIDAMALLOC. Table 5.4 lists the entries in these two arrays and specifies the optional variable as well
as the IDA function which is actually called to extract the optional output.

For more details on the optional inputs and outputs, see §4.5.8 and §4.5.10.

In addition to the optional inputs communicated through FIDASET* calls and the optional outputs
extracted from IOUT and ROUT, the following user-callable routines are available:

To reset the tolerances at any time, make the following call:

CALL FIDATOLREINIT (IATOL, RTOL, ATOL, IER)

The tolerance arguments have the same names and meanings as those of FIDAMALLOC. The error return
flag IER is O if successful, and negative if there was a memory failure or illegal input.

To obtain the error weight array EWT, containing the multiplicative error weights used the WRMS
norms, make the following call:

CALL FIDAGETERRWEIGHTS (EWT, IER)

This computes the EWT array, normally defined by Eq. (2.6). The array EWT, of length NEQ or NLOCAL,
must already have been declared by the user. The error return flag IER is zero if successful, and
negative if there was a memory error.

104

Using IDA for Fortran Applications

Table 5.3: Keys for setting FIDA optional inputs
Integer optional inputs (FIDASETIIN)

Key Optional input Default value
MAX_ORD Maximum LMM method order 5
MAX_NSTEPS Maximum no. of internal steps before oyt 500
MAX_ERRFAIL Maximum no. of error test failures 10
MAX_NITERS Maximum no. of nonlinear iterations 4
MAX_CONVFAIL Maximum no. of convergence failures 10

SUPPRESS_ALG
MAX_NSTEPS_IC

Suppress alg. vars. from error test (1 = SUNTRUE)
Maximum no. of steps for IC calc.

0 (= SUNFALSE)
5

MAX_NITERS_IC Maximum no. of Newton iterations for IC calc. 10
MAX_NJE_IC Maximum no. of Jac. evals fo IC calc. 4
LS_OFF_IC Turn off line search (1 = SUNTRUE) 0 (= SUNFALSE)
Real optional inputs (FIDASETRIN)
Key Optional input Default value
INIT_STEP Initial step size estimated
MAX_STEP Maximum absolute step size 00
STOP_TIME Value of t0p undefined
NLCONV_COEF Coeff. in the nonlinear conv. test 0.33
NLCONV_COEF_IC Coeff. in the nonlinear conv. test for IC calc. 0.0033
STEP_TOL_IC Lower bound on Newton step for IC calc. uround?/3
Real vector optional inputs (FIDASETVIN)
Key Optional input Default value
ID_VEC Differential /algebraic component types undefined
CONSTR_VEC Inequality constraints on solution undefined

5.5 FIDA optional input and output

105

Table 5.4: Description of the FIDA optional output arrays I0UT and ROUT

Integer output array IOUT

Index | Optional output \ IDA function
IDA main solver
1 LENRW IDAGetWorkSpace
2 LENIW IDAGetWorkSpace
3 NST IDAGetNumSteps
4 NRE IDAGetNumResEvals
5 NETF IDAGetNumErrTestFails
6 NNCFAILS IDAGetNonlinSolvConvFails
7 NNI IDAGetNumNonlinSolvIters
8 NSETUPS IDAGetNumLinSolvSetups
9 QLAST IDAGetLastOrder
10 QCUR IDAGetCurrentOrder
11 NBCKTRKOPS IDAGetNumBacktrackOps
12 NGE IDAGetNumGEvals
IDALS linear solver interface
13 LENRWLS IDAGetLinWorkSpace
14 LENIWLS IDAGetLinWorkSpace
15 LS_FLAG IDAGetLastLinFlag
16 NRELS IDAGetNumLinResEvals
17 NJE IDAGetNumJacEvals
18 NJTS IDAGetNumJTSetupEvals
19 NJT IDAGetNumJtimesEvals
20 NPE IDAGetNumPrecEvals
21 NPS IDAGetNumPrecSolves
22 NLI IDAGetNumLinIters
23 NCFL IDAGetNumLinConvFails
Real output array ROUT
Index | Optional output | IDA function
1 HO_USED IDAGetActualInitStep
2 HLAST IDAGetLastStep
3 HCUR IDAGetCurrentStep
4 TCUR IDAGetCurrentTime
5 TOLFACT IDAGetTolScaleFactor
6 UROUND unit roundoff

106 Using IDA for Fortran Applications

To obtain the estimated local errors, following a successful call to FIDASOLVE, make the following
call:

CALL FIDAGETESTLOCALERR (ELE, IER)

This computes the ELE array of estimated local errors as of the last step taken. The array ELE must
already have been declared by the user. The error return flag IER is zero if successful, and negative
if there was a memory error.

5.5.1 Usage of the FIDAROOT interface to rootfinding

The FIDAROOT interface package allows programs written in FORTRAN to use the rootfinding feature
of the IDA solver module. The user-callable functions in FIDAROOT, with the corresponding IDA
functions, are as follows:

e FIDAROOTINIT interfaces to IDARootInit.
e FIDAROOTINFO interfaces to IDAGetRootInfo.
e FIDAROOTFREE interfaces to IDARootFree.

Note that, at this time FIDAROOT does not provide support to specify the direction of zero-crossing that
is to be monitored. Instead, all roots are considered. However, the actual direction of zero-crossing is
reported (through the sign of the non-zero elements in the array INFO returned by FIDAROTINFO).

In order to use the rootfinding feature of IDA, the following call must be made, after calling
FIDAMALLOC but prior to calling FIDASOLVE, to allocate and initialize memory for the FIDAROOT module:

CALL FIDAROOTINIT (NRTFN, IER)

The arguments are as follows: NRTFN is the number of root functions. IER is a return completion flag;
its values are 0 for success, —1 if the IDA memory was NULL, and —14 if a memory allocation failed.
To specifiy the functions whose roots are to be found, the user must define the following routine:

SUBROUTINE FIDAROOTFN (T, Y, YP, G, IPAR, RPAR, IER)
DIMENSION Y(*), YP(x), G(*), IPAR(*), RPAR(*)

It must set the G array, of length NRTFN, with components g;(t,y,¥), as a function of T = ¢ and the
arrays Y = y and YP = y. The arrays IPAR (of integers) and RPAR (of reals) contain user data and are
the same as those passed to FIDAMALLOC. Set IER on 0 if successful, or on a non-zero value if an error
occurred.

When making calls to FIDASOLVE to solve the DAE system, the occurrence of a root is flagged by
the return value IER = 2. In that case, if NRTFN > 1, the functions g; which were found to have a root
can be identified by making the following call:

CALL FIDAROOTINFO (NRTFN, INFO, IER)

The arguments are as follows: NRTFN is the number of root functions. INFO is an integer array of
length NRTFN with root information. IER is a return completion flag; its values are 0 for success,
negative if there was a memory failure. The returned values of INFO(i) (i= 1,..., NRTFN) are 0 or
41, such that INFO(i) = +1 if g; was found to have a root and g; is increasing, INFO(i) = —1 if g;
was found to have a root and g; is dereasing, and INFO(i) = 0 otherwise.

The total number of calls made to the root function FIDAROOTFN, denoted NGE, can be obtained
from IOUT(12). If the FIDA/IDA memory block is reinitialized to solve a different problem via a call
to FIDAREINIT, then the counter NGE is reset to zero.

To free the memory resources allocated by a prior call to FIDAROOTINIT, make the following call:

CALL FIDAROOTFREE

See §4.5.6 for additional information on the rootfinding feature.

5.5 FIDA optional input and output 107

5.5.2 Usage of the FIDABBD interface to IDABBDPRE

The FIDABBD interface sub-module is a package of C functions which, as part of the FIDA interface
module, support the use of the IDA solver with the parallel NVECTOR_PARALLEL module, in a combi-
nation of any of the Krylov iterative solver modules with the IDABBDPRE preconditioner module (see
§4.7).

The user-callable functions in this package, with the corresponding IDA and IDABBDPRE functions,
are as follows:

e FIDABBDINIT interfaces to IDABBDPrecAlloc.

e FIDABBDREINIT interfaces to IDABBDPrecReInit.

e FIDABBDOPT interfaces to IDABBDPRE optional output functions.
e FIDABBDFREE interfaces to IDABBDPrecFree.

In addition to the FORTRAN residual function FIDARESFUN, the user-supplied functions used by
this package, are listed below, each with the corresponding interface function which calls it (and its
type within IDABBDPRE or IDA):

FIDABBD routine (FORTRAN) | IDA function (C) | DA function type

FIDAGLOCFN FIDAgloc IDABBDLocalFn
FIDACOMMFN FIDAcfn IDABBDCommFn
FIDAJTIMES FIDAJtimes IDALsJacTimesVecFn
FIDAJTSETUP FIDAJTSetup IDALsJacTimesSetupFn

As with the rest of the FIDA routines, the names of all user-supplied routines here are fixed, in order to
maximize portability for the resulting mixed-language program. Additionally, based on flags discussed
above in §5.4.1, the names of the user-supplied routines are mapped to actual values through a series
of definitions in the header file fidabbd.h.

The following is a summary of the usage of this module. Steps that are unchanged from the main
program described in §5.4.2 are grayed-out.

1. Residual function specification
2. NVECTOR module initialization

3. SUNLINSOL module initialization

Initialize one of the iterative SUNLINSOL modules, by calling one of FSUNPCGINIT, FSUNSPBCGSINIT,
FSUNSPFGMRINIT, FSUNSPGMRINIT or FSUNSPTFQMRINIT.

4. Problem specification
5. Set optional inputs

6. Linear solver interface specification

Initialize the IDALS iterative linear solver interface by calling FIDALSINIT.

7. BBD preconditioner initialization

To initialize the IDABBDPRE preconditioner, make the following call:
CALL FIDABBDINIT (NLOCAL, MUDQ, MLDQR, MU, ML, DQRELY, IER)

The arguments are as follows. NLOCAL is the local size of vectors on this processor. MUDQ and MLDQ
are the upper and lower half-bandwidths to be used in the computation of the local Jacobian blocks
by difference quotients. These may be smaller than the true half-bandwidths of the Jacobian of
the local block of G, when smaller values may provide greater efficiency. MU and ML are the upper

108 Using IDA for Fortran Applications

and lower half-bandwidths of the band matrix that is retained as an approximation of the local
Jacobian block. These may be smaller than MUDQ and MLDQ. DQRELY is the relative increment factor
in y for difference quotients (optional). A value of 0.0 indicates the default, v/ unit roundoff. IER
is a return completion flag. A value of 0 indicates success, while a value of —1 indicates that a
memory failure occurred or that an input had an illegal value.

8. Correct initial values
9. Problem solution
10. Additional solution output

11. IDABBDPRE Optional outputs

Optional outputs specific to the SPGMR, SPBCGS, or SPTFQMR solver are listed in Table 5.4. To
obtain the optional outputs associated with the IDABBDPRE module, make the following call:

CALL FIDABBDOPT (LENRWBBD, LENIWBBD, NGEBBD)

The arguments should be consistent with C type long int. Their returned values are as follows:
LENRWBBD is the length of real preconditioner work space, in realtype words. LENIWBBD is the
length of integer preconditioner work space, in integer words. Both of these sizes are local to the
current processor. NGEBBD is the number of G(t,y,y) evaluations (calls to FIDALOCFN) so far.

12. Problem reinitialization

If a sequence of problems of the same size is being solved using the same linear solver in combina-
tion with the IDABBDPRE preconditioner, then the IDA package can be re-initialized for the second
and subsequent problems by calling FIDAREINIT, following which a call to FIDABBDINIT may or
may not be needed. If the input arguments are the same, no FIDABBDINIT call is needed. If there
is a change in input arguments other than MU or ML, then the user program should make the call

CALL FIDABBDREINIT (NLOCAL, MUDQ, MLDQ, DQRELY, IER)

This reinitializes the IDABBDPRE preconditioner, but without reallocating its memory. The argu-
ments of the FIDABBDREINIT routine have the same names and meanings as those of FIDABBDINIT.
If the value of MU or ML is being changed, then a call to FIDABBDINIT must be made. Finally, if
there is a change in any of the linear solver inputs, then a call to one of FSUN***xINIT, followed
by a call to FIDALSINIT must also be made; in this case the linear solver memory is reallocated.

13. Memory deallocation
(The memory allocated for the FIDABBD module is deallocated automatically by FIDAFREE.)

14. User-supplied routines

The following two routines must be supplied for use with the IDABBDPRE module:

SUBROUTINE FIDAGLOCFN (NLOC, T, YLOC, YPLOC, GLOC, IPAR, RPAR, IER)
DIMENSION YLOC(*), YPLOC(*), GLOC(*), IPAR(*), RPAR(*)

This routine is to evaluate the function G(t,y,y) approximating F (possibly identical to F), in
terms of T = ¢, and the arrays YLOC and YPLOC (of length NLOC), which are the sub-vectors of y
and g local to this processor. The resulting (local) sub-vector is to be stored in the array GLOC.
IER is a return flag that should be set to 0 if successful, to 1 (for a recoverable error), or to -1 (for
a non-recoverable error). The arrays IPAR (of integers) and RPAR (of reals) contain user data and
are the same as those passed to FIDAMALLOC.

5.5 FIDA optional input and output 109

SUBROUTINE FIDACOMMFN (NLOC, T, YLOC, YPLOC, IPAR, RPAR, IER)
DIMENSION YLOC(x), YPLOC(*), IPAR(*), RPAR(x)

This routine is to perform the inter-processor communication necessary for the FIDAGLOCFN rou-
tine. Each call to FIDACOMMFN is preceded by a call to the residual routine FIDARESFUN with the
same arguments T, YLOC, and YPLOC. Thus FIDACOMMFN can omit any communications done by
FIDARESFUN if relevant to the evaluation of GLOC. The arrays IPAR (of integers) and RPAR (of reals)
contain user data and are the same as those passed to FIDAMALLOC. IER is a return flag that should
be set to 0 if successful, to 1 (for a recoverable error), or to -1 (for a non-recoverable error).

The subroutine FIDACOMMFN must be supplied even if it is empty, and it must return IER = O.

Optionally, the user can supply routines FIDAJTIMES and FIDAJTSETUP for the evaluation of
Jacobian-vector products, as described above in step 7 in §5.4.2.

Chapter 6

IDA Features for GPU Accelerated
Computing

This chapter is concerned with using GPU-acceleration and IDA for the solution of DAEs.

6.1 SUNDIALS GPU Programming Model

In this section, we introduce the SUNDIALS GPU programming model and highlight suNnpiALS GPU
features. The model leverages the fact that all of the SUNDIALS packages interact with simulation
data either through the shared vector, matrix, and solver APIs (see §7, §8, §9, and §10) or through
user-supplied callback functions. Thus, under the model, the overall structure of the user’s calling
program, and the way users interact with the SUNDIALS packages is similar to using SUNDIALS in
CPU-only environments.

Within the SUNDIALS GPU programming model, all control logic executes on the CPU, and all
simulation data resides wherever the vector or matrix object dictates as long as SUNDIALS is in control
of the program. That is, SUNDIALS will not migrate data (explicitly) from one memory space to
another. Except in the most advanced use cases, it is safe to assume that data is kept resident in
the GPU-device memory space. The consequence of this is that, when control is passed from the
user’s calling program to SUNDIALS, simulation data in vector or matrix objects must be up-to-date
in the device memory space. Similarly, when control is passed from SUNDIALS to the user’s calling
program, the user should assume that any simulation data in vector and matrix objects are up-to-date
in the device memory space. To put it succinctly, it is the responsibility of the user’s calling program
to manage data coherency between the CPU and GPU-device memory spaces unless unified virtual
memory (UVM), also known as managed memory, is being utilized. Typically, the GPU-enabled
SUNDIALS modules provide functions to copy data from the host to the device and vice-versa as well
as support for unmanaged memory or UVM. In practical terms, the way SUNDIALS handles distinct
host and device memory spaces means that users need to ensure that the user-supplied functions, e.g.
the right-hand side function, only operate on simulation data in the device memory space otherwise
extra memory transfers will be required and performance will be poor. The exception to this rule is if
some form of hybrid data partitioning (achievable with the NVECTOR_MANYVECTOR §7.15) is utilized.

SUNDIALS provides many native shared features and modules that are GPU-enabled. Currently,
these are primarily limited to the NVIDIA CUDA platform [5], although support for more GPU
computing platforms such as AMD ROCm/HIP [1] and Intel oneAPI [2], is an area of active de-
velopment. Table 6.1 summarizes the shared SUNDIALS modules that are GPU-enabled, what GPU
programming environments they support, and what class of memory they support (unmanaged or
UVM). Users may also supply their own GPU-enabled N_Vector, SUNMatrix, SUNLinearSolver, or
SUNNonlinearSolver implementation, and the capabilties will be leveraged since SUNDIALS operates
on data through these APIs.

In addition, SUNDIALS provides the SUNMemoryHelper API §11.1 to support applications which

112

IDA Features for GPU Accelerated Computing

implement their own memory management or memory pooling.

Table 6.1: List of sSUNDIALS GPU Enabled Modules. Note that support for ROCm/HIP and oneAPI
are currently untested, and implicit UVM (i.e. malloc returning UVM) is not accounted for. A The
1 symbol indicates that the module inherits support from the NVECTOR module used.

ROCm/HIP
oneAPI

Module

NVECTOR_CUDA (§7.9)

NVECTOR_RAJA (§7.11)
NVECTOR_OPENMPDEV (§7.13)
SUNMATRIX_CUSPARSE (§8.7)
SUNLINSOL_CUSOLVERSP_BATCHQR (§9.12)
SUNLINSOL_SPGMR, (§9.15)
SUNLINSOL_SPFCMR. (§9.16)
)

)

)

)

)

SUNLINSOL_SPBCGS (§9.17
SUNLINSOL_PCG (§9.19
SUNNONLINSOL_NEWTON (§10.3
SUNNONLINSOL_FIXEDPOINT (§77?

(

E
SUNLINSOL_SPTFQMR, (§9.18

(

(

(

—_ = = NN A Unmanaged memory

—+ = = = — = — < A A K[CUDA
(\
(\

— == A A S| UVM

— — — — — — —+
— — — — — — —

6.2 Steps for Using GPU Accelerated SUNDIALS

For any SUNDIALS package, the generalized steps a user needs to take to use GPU accelerated SUNDIALS

are:

1.

- W

Utilize a GPU-enabled NVECTOR implementation. Initial data can be loaded on the host, but
must be in the device memory space prior to handing control to SUNDIALS.

Utilize a GPU-enabled SUNLINSOL linear solver (if necessary).
Utilize a GPU-enabled SUNMATRIX implementation (if using a matrix-based linear solver).
Utilize a GPU-enabled SUNNONLINSOL nonlinear solver (if necessary).

Write user-supplied functions so that they use data only in the device memory space (again,
unless an atypical data partitioning is used). A few examples of these functions are the right-
hand side evaluation function, the Jacobian evalution function, or the preconditioner evaluation
function. In the context of CUDA and the right-hand side function, one way a user might
ensure data is accessed on the device is, for example, calling a CUDA kernel, which does all of
the computation, from a CPU function which simply extracts the underlying device data array
from the NVECTOR object that is passed from SUNDIALS to the user-supplied function.

Users should refer to Table 6.1 for a list of GPU-enabled native SUNDIALS modules.

Chapter 7

Description of the NVECTOR
module

The SUNDIALS solvers are written in a data-independent manner. They all operate on generic vectors
(of type N_Vector) through a set of operations defined by the particular NVECTOR implementation.
Users can provide their own specific implementation of the NVECTOR module, or use one of the
implementations provided with SUNDIALS. The generic NVECTOR is described below and the imple-
mentations provided with SUNDIALS are described in the following sections.

7.1 The NVECTOR API

The generic NVECTOR API can be broken down into groups of functions: the core vector operations,
the fused vector operations, the vector array operations, the local reduction operations, the exchange
operations, and finally some utility functions. All but the last group are defined by a particular
NVECTOR implementation. The utility functions are defined by the generic NVECTOR itself.

7.1.1 NVECTOR core functions

’ N_VGetVectorID ‘
Call id = N_VGetVectorID(w);

Description Returns the vector type identifier for the vector w. It is used to determine the vector
implementation type (e.g. serial, parallel,...) from the abstract N_Vector interface.

Arguments w (N_Vector) a NVECTOR object
Return value This function returns an N_Vector_ID. Possible values are given in Table 7.1.

F2003 Name FN_VGetVectorID

Call v = N_VClone(w);

Description Creates a new N_Vector of the same type as an existing vector w and sets the ops field.
It does not copy the vector, but rather allocates storage for the new vector.

Arguments w (N_Vector) a NVECTOR object

Return value This function returns an N_Vector object. If an error occurs, then this routine will
return NULL.

F2003 Name FN_VClone

114 Description of the NVECTOR module

N_VCloneEmpty

Call v = N_VCloneEmpty(w) ;

Description Creates a new N_Vector of the same type as an existing vector w and sets the ops field.
It does not allocate storage for data.

Arguments w (N_Vector) a NVECTOR object

Return value This function returns an N_Vector object. If an error occurs, then this routine will
return NULL.

F2003 Name FN_VCloneEmpty

N_VDestroy

Call N_VDestroy(v);

Description Destroys the N_Vector v and frees memory allocated for its internal data.
Arguments v (N_Vector) a NVECTOR object to destroy

Return value None

F2003 Name FN_VDestroy

Call N_VSpace(v, &lrw, &liw);

Description Returns storage requirements for one N_Vector. lrw contains the number of realtype
words and 1liw contains the number of integer words, This function is advisory only, for
use in determining a user’s total space requirements; it could be a dummy function in
a user-supplied NVECTOR module if that information is not of interest.

Arguments v (N_Vector) a NVECTOR object
lrv (sunindextype*) out parameter containing the number of realtype words

liv (sunindextype*) out parameter containing the number of integer words
Return value None
F2003 Name FN_VSpace

F2003 Call integer(c_long) :: 1lrw(1), 1liw(l)
call FN_VSpace_Serial(v, lrw, liw)

N_VGetArrayPointer

Call vdata = N_VGetArrayPointer(v);

Description Returns a pointer to a realtype array from the N_Vector v. Note that this assumes
that the internal data in N_Vector is a contiguous array of realtype and is accessible
from the CPU.

This routine is only used in the solver-specific interfaces to the dense and banded (serial)
linear solvers, the sparse linear solvers (serial and threaded), and in the interfaces to
the banded (serial) and band-block-diagonal (parallel) preconditioner modules provided
with SUNDIALS.

Arguments v (N_Vector) a NVECTOR object
Return value realtypex

F2003 Name FN_VGetArrayPointer

7.1 The NVECTOR API 115

N_VGetDeviceArrayPointer

Call vdata = N_VGetDeviceArrayPointer(v);

Description Returns a device pointer to a realtype array from the N_Vector v. Note that this
assumes that the internal data in N_Vector is a contiguous array of realtype and is
accessible from the device (e.g., GPU).

This operation is optional except when using the GPU-enabled direct linear solvers.
Arguments v (N_Vector) a NVECTOR object
Return value realtype*

Notes Currently, only the GPU-enabled SUNDIALS vectors provide this operation. All other
SUNDIALS vectors will return NULL.

F2003 Name FN_VGetDeviceArrayPointer

N_VSetArrayPointer

Call N_VSetArrayPointer (vdata, v);

Description Overwrites the pointer to the data in an N_Vector with a given realtype*. Note that
this assumes that the internal data in N_Vector is a contiguous array of realtype. This
routine is only used in the interfaces to the dense (serial) linear solver, hence need not
exist in a user-supplied NVECTOR module for a parallel environment.

Arguments v (N_Vector) a NVECTOR object
Return value None

F2003 Name FN_VSetArrayPointer

’ N_VGetCommunicator

Call N_VGetCommunicator(v) ;

Description Returns a pointer to the MPI_Comm object associated with the vector (if applicable). For
MPI-unaware vector implementations, this should return NULL.

Arguments v (N_Vector) a NVECTOR object
Return value A void * pointer to the MPI_Comm object if the vector is MPI-aware, otherwise NULL.

F2003 Name FN_VGetCommunicator

N_VGetLength

Call N_VGetLength(v);

Description Returns the global length (number of ‘active’ entries) in the NVECTOR v. This value
should be cumulative across all processes if the vector is used in a parallel environment.
If v contains additional storage, e.g., for parallel communication, those entries should
not be included.

Arguments v (N_Vector) a NVECTOR object
Return value sunindextype

F2003 Name FN_VGetLength

116

Description of the NVECTOR module

N_VLinearSum

Call

Description

Arguments

Return value

F2003 Name

Call
Description

Arguments

Return value

F2003 Name

Call

Description

Arguments

Return value

F2003 Name

Call

Description

Arguments

Return value

F2003 Name

N_VLinearSum(a, x, b, y, 2);

Performs the operation z = ax + by, where a and b are realtype scalars and x and y
are of type N_Vector: z; = az; +by;, 1 =0,...,n— 1.

(realtype) constant that scales x
(N_Vector) a NVECTOR object

a
x
b (realtype) constant that scales y
y (N_Vector) a NVECTOR object

z

(N_Vector) a NVECTOR object containing the result
The output vector z can be the same as either of the input vectors (x or y).

FN_VLinearSum

N_VConst(c, z);
Sets all components of the N_Vector z to realtype c: z;, =¢, i =0,...,n— 1.

c (realtype) constant to set all components of z to

z (N_Vector) a NVECTOR object containing the result
None

FN_VConst

N_VProd(x, y, 2);

Sets the N_Vector z to be the component-wise product of the N_Vector inputs x and y:
Zi = TiYi, iZO,...,n—l.

x (N_Vector) a NVECTOR object

y (N_Vector) a NVECTOR object
z (N_Vector) a NVECTOR object containing the result

None

FN_VProd

N VDiv(x, y, 2);

Sets the N_Vector z to be the component-wise ratio of the N_Vector inputs x and y:
zi = 23 /yi, i = 0,...,n — 1. The y; may not be tested for 0 values. It should only be
called with a y that is guaranteed to have all nonzero components.

x (N_Vector) a NVECTOR object
y (N_Vector) a NVECTOR object
z (N_Vector) a NVECTOR object containing the result

None

FN_VDiv

7.1 The NVECTOR API 117

Call N_VScale(c, x, z);

Description Scales the N_Vector x by the realtype scalar ¢ and returns the result in z: z; = cx;, i =
0,...,n—1.

Arguments ¢ (realtype) constant that scales the vector x
x (N_Vector) a NVECTOR object
z (N_Vector) a NVECTOR object containing the result

Return value None
F2003 Name FN_VScale

Call N_VAbs(x, z);

Description Sets the components of the N_Vector z to be the absolute values of the components of
the N.Vector x: z; = |z, 1=0,...,n— 1.

Arguments x (N_Vector) a NVECTOR object

z (N_Vector) a NVECTOR object containing the result
Return value None
F2003 Name FN_VAbs

Call N_VInv(x, z);
Description Sets the components of the N_Vector z to be the inverses of the components of the
N_Vector x: z; = 1.0/x;,i=0,...,n— 1. This routine may not check for division by 0.

It should be called only with an x which is guaranteed to have all nonzero components.

Arguments x (N_Vector) a NVECTOR object to
z (N_Vector) a NVECTOR object containing the result

Return value None
F2003 Name FN_VInv

N_VAddConst

Call N_VAddConst(x, b, z);

Description Adds the realtype scalar b to all components of x and returns the result in the N_Vector
z: zi=x;+0b,1=0,...,n—1.

Arguments x (N_Vector) a NVECTOR object
b (realtype) constant added to all components of x
z (N_Vector) a NVECTOR object containing the result

Return value None
F2003 Name FN_VAddConst

N_VDotProd

Call d = N_VDotProd(x, y);

Description Returns the value of the ordinary dot product of x and y: d = 2?2—01 TiYi-

Arguments x (N_Vector) a NVECTOR object with y
y (N_Vector) a NVECTOR object with x

118 Description of the NVECTOR module

Return value realtype

F2003 Name FN_VDotProd

N_VMaxNorm

Call m = N_VMaxNorm(x) ;

Description Returns the maximum norm of the N_Vector x: m = max; |z;|.
Arguments x (N_Vector) a NVECTOR object

Return value realtype

F2003 Name FN_VMaxNorm

N_VWrmsNorm

Call m = N_VWrmsNorm(x, w)

Description Returns the weighted root-mean-square norm of the N_Vector x with realtype weight
vector w: m = \/(Z?_Ol (xl-wi)2> /n.

Arguments x (N_Vector) a NVECTOR object

w (N_Vector) a NVECTOR object containing weights
Return value realtype

F2003 Name FN_VWrmsNorm

\ N_VWrmsNormMask \
Call m = N_VWrmsNormMask(x, w, id);

Description Returns the weighted root mean square norm of the N_Vector x with realtype weight
vector w built using only the elements of x corresponding to positive elements of the

- 1 0
N_Vector id: m = \/<Z:l_01 (x'Lle(Zd’L))Q) /n7 Where H(a) = {O ¢ z O
@ =

Arguments x (N_Vector) a NVECTOR object
w (N_Vector) a NVECTOR object containing weights

id (N_Vector) mask vector
Return value realtype

F2003 Name FN_VWrmsNormMask

Call m = N_VMin(x);

Description Returns the smallest element of the N_Vector x: m = min; x;.
Arguments x (N_Vector) a NVECTOR object

Return value realtype

F2003 Name FN_VMin

7.1 The NVECTOR API 119

N_VWL2Norm

Call m = N_VWL2Norm(x, w);
Description Returns the weighted Euclidean #5 norm of the N_Vector x with realtype weight vector
w:om o=/ (w2,

Arguments x (N_Vector) a NVECTOR object
w (N_Vector) a NVECTOR object containing weights

Return value realtype
F2003 Name FN_VWL2Norm

Call m = N_VLiNorm(x);

Description Returns the £, norm of the N_Vector x: m = S0 |z;.
Arguments x (N_Vector) a NVECTOR object to obtain the norm of
Return value realtype

F2003 Name FN_VL1Norm

N_VCompare

Call N_VCompare(c, x, 2z);

Description Compares the components of the N_Vector x to the realtype scalar ¢ and returns an
N_Vector z such that: z; = 1.0 if |2;| > ¢ and z; = 0.0 otherwise.

Arguments ¢ (realtype) constant that each component of x is compared to
x (N_Vector) a NVECTOR object
z (N_Vector) a NVECTOR object containing the result

Return value None

F2003 Name FN_VCompare

N_VInvTest

Call t = N_VInvTest(x, z);

Description Sets the components of the N_Vector z to be the inverses of the components of the
N_Vector x, with prior testing for zero values: z; = 1.0/z;, i =0,...,n— 1.

Arguments x (N_Vector) a NVECTOR object
z (N_Vector) an output NVECTOR object

Return value Returns a booleantype with value SUNTRUE if all components of x are nonzero (success-
ful inversion) and returns SUNFALSE otherwise.

F2003 Name FN_VInvTest

’ N_VConstrMask ‘
Call t = N_VConstrMask(c, x, m);

Description Performs the following constraint tests: z; > 0if ¢; = 2, z; > 0if ¢; = 1, z; < 0 if
¢; = —1, x; < 0if ¢; = —2. There is no constraint on x; if ¢; = 0. This routine returns
a boolean assigned to SUNFALSE if any element failed the constraint test and assigned
to SUNTRUE if all passed. It also sets a mask vector m, with elements equal to 1.0 where
the constraint test failed, and 0.0 where the test passed. This routine is used only for
constraint checking.

120 Description of the NVECTOR module

Arguments ¢ (realtype) scalar constraint value
x (N_Vector) a NVECTOR object
m (N_Vector) output mask vector

Return value Returns a booleantype with value SUNFALSE if any element failed the constraint test,
and SUNTRUE if all passed.

F2003 Name FN_VConstrMask

N_VMinQuotient

Call ming = N_VMinQuotient(num, denom) ;

Description This routine returns the minimum of the quotients obtained by term-wise dividing num;
by denom;. A zero element in denom will be skipped. If no such quotients are found, then
the large value BIG_REAL (defined in the header file sundials_types.h) is returned.

Arguments num (N_Vector) a NVECTOR object used as the numerator
denom (N_Vector) a NVECTOR object used as the denominator

Return value realtype
F2003 Name FN_VMinQuotient

7.1.2 NVECTOR fused functions

Fused and vector array operations are intended to increase data reuse, reduce parallel communication
on distributed memory systems, and lower the number of kernel launches on systems with accelerators.
If a particular NVECTOR implementation defines a fused or vector array operation as NULL, the generic
NVECTOR module will automatically call standard vector operations as necessary to complete the
desired operation. In all SUNDIALS-provided NVECTOR implementations, all fused and vector array
operations are disabled by default. However, these implementations provide additional user-callable
functions to enable/disable any or all of the fused and vector array operations. See the following
sections for the implementation specific functions to enable/disable operations.

’ N_VLinearCombination ‘

Call ier = N_VLinearCombination(nv, c, X, z);

Description This routine computes the linear combination of n, vectors with n elements:

Ny, —1

Zi = E CiTj, Z':(),...,’I’L—l7
Jj=0

where c is an array of n, scalars, X is an array of n,, vectors, and z is the output vector.
Arguments nv (int) the number of vectors in the linear combination

c (realtype*) an array of n, scalars used to scale the corresponding vector in X

X (N_Vectorx) an array of n, NVECTOR objects to be scaled and combined

z (N_Vector) a NVECTOR object containing the result
Return value Returns an int with value 0 for success and a non-zero value otherwise.

Notes If the output vector z is one of the vectors in X, then it must be the first vector in the
vector array.

F2003 Name FN_VLinearCombination

F2003 Call real(c_double) :: c(av)
type(c_ptr), target :: X(av)
type(N_Vector), pointer :: =z

ierr = FN_VLinearCombination(nv, c, X, z)

7.1 The NVECTOR API 121

[N_VScaleAddMulti
Call ier = N_VScaleAddMulti(av, c, x, Y, Z);

Description This routine scales and adds one vector to n, vectors with n elements:
Zj,i:Cj$i+yj,i7 jZO,...,’ﬂvfl Z':(),...,n*l,

where c is an array of n, scalars, z is the vector to be scaled and added to each vector

in the vector array of n, vectors Y, and Z is a vector array of n, output vectors.
Arguments nv (int) the number of scalars and vectors in ¢, Y, and Z

c (realtype*) an array of n, scalars

x (N_Vector) a NVECTOR object to be scaled and added to each vector in Y

(N_Vector*) an array of n, NVECTOR objects where each vector j will have the
vector x scaled by c_j added to it

Z (N_Vector) an output array of n, NVECTOR objects
Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VScaleAddMulti

F2003 Call real(c_double) :: c(av)
type(c_ptr), target :: Y(av), Z(av)
type(N_Vector), pointer :: x

ierr = FN_VScaleAddMulti(av, c, x, Y, Z)

| N_VDotProdMulti

Call ier = N_VDotProdMulti(anv, x, Y, d);

Description This routine computes the dot product of a vector with n, other vectors:

n—1

djzzxiyj,ia j:O7"'7nv_1a
=0

where d is an array of n, scalars containing the dot products of the vector x with each
of the n, vectors in the vector array Y.
Arguments nv (int) the number of vectors in Y
x (N_Vector) a NVECTOR object to be used in a dot product with each of the vectors
inY
Y (N_Vector#) an array of n, NVECTOR objects to use in a dot product with x

d (realtype*) an output array of n, dot products
Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VDotProdMulti

F2003 Call real(c_double) :: d(av)
type(c_ptr), target :: Y(av)
type(N_Vector), pointer :: x

ierr = FN_VDotProdMulti(av, x, Y, d)

7.1.3 NVECTOR vector array functions

122 Description of the NVECTOR module

N_VLinearSumVectorArray

Call ier = N_VLinearSumVectorArray(nv, a, X, b, Y, Z);

Description This routine computes the linear sum of two vector arrays containing n, vectors of n
elements:

zM:aJ;j,i—&—byj,i, 1=0,....,n—1 57=0,...,n, — 1,
where a and b are scalars and X, Y, and Z are arrays of n, vectors.

Arguments nv (int) the number of vectors in the vector arrays
a (realtype) constant to scale each vector in X by
X (N_Vector*) an array of n, NVECTOR objects
Y (N_Vectorx) an array of n, NVECTOR objects
Z (N_Vector*) an output array of n, NVECTOR objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VLinearSumVectorArray

N_VScaleVectorArray

Call ier = N_VScaleVectorArray(anv, c, X, Z);
Description This routine scales each vector of n elements in a vector array of n, vectors by a
potentially different constant:

Zji =¢jxjs, 1=0,....n—=1 j=0,...,n, -1,

where ¢ is an array of n, scalars and X and Z are arrays of n, vectors.

Arguments nv (int) the number of vectors in the vector arrays
¢ (realtype) constant to scale each vector in X by
X (N_Vector*) an array of n, NVECTOR objects
Z (N_Vector*) an output array of n, NVECTOR objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VScaleVectorArray

N_VConstVectorArray

Call ier = N_VConstVectorArray(nv, c, X);
Description This routine sets each element in a vector of n elements in a vector array of n, vectors

to the same value:

zji=¢ 1=0,...,n—=1 j=0,...,n, -1,

)

where c is a scalar and X is an array of n, vectors.

Arguments nv (int) the number of vectors in X
c (realtype) constant to set every element in every vector of X to
X (N_Vector*) an array of n, NVECTOR objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VConstVectorArray

7.1 The NVECTOR API 123

N_VWrmsNormVectorArray

Call ier = N_VWrmsNormVectorArray(nv, X, W, m);

Description This routine computes the weighted root mean square norm of n, vectors with n ele-

ments:
1 n—1 1/2
mj = <n Z (xj,lw],l)2>) .7 = Oa sy Ty —]-7

i=0
where m contains the n, norms of the vectors in the vector array X with corresponding
weight vectors W.
Arguments nv (int) the number of vectors in the vector arrays
X (N_Vector*) an array of n, NVECTOR objects
W (N_Vector*) an array of n, NVECTOR objects
m (realtype*) an output array of n, norms

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VWrmsNormVectorArray

N_VWrmsNormMaskVectorArray

Call ier = N_VWrmsNormMaskVectorArray(nv, X, W, id, m);

Description This routine computes the masked weighted root mean square norm of n, vectors with
n elements:

n -
=0

ne1 1/2
1
mj = (> (%,z‘wj,z‘H(idi))2> v J=0m = 1L

H(id;) =1 for id; > 0 and is zero otherwise, m contains the n, norms of the vectors in

the vector array X with corresponding weight vectors W and mask vector id.
Arguments nv (int) the number of vectors in the vector arrays

X (N_Vector*) an array of n, NVECTOR objects

W (N_Vectorx) an array of n, NVECTOR objects

id (N_Vector) the mask vector

m (realtype*) an output array of n, norms

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VWrmsNormMaskVectorArray

N_VScaleAddMultiVectorArray

Call ier = N_VScaleAddMultiVectorArray(av, ns, c, X, YY, ZZ);

Description This routine scales and adds a vector in a vector array of n, vectors to the corresponding
vector in ng vector arrays:

Zkji = CkTji + Ykji, ©=0,...,n—1 j=0,...,nv—-1, k=0,...,ns—1

where ¢ is an array of ny scalars, X is a vector array of n, vectors to be scaled and
added to the corresponding vector in each of the ng vector arrays in the array of vector
arrays Y'Y and stored in the output array of vector arrays ZZ.

Arguments nv (int) the number of vectors in the vector arrays
ns (int) the number of scalars in ¢ and vector arrays in YY and ZZ
c (realtype*) an array of ny scalars

124 Description of the NVECTOR module

X (N_Vector*) an array of n, NVECTOR objects
YY (N_Vector#x) an array of ny NVECTOR arrays
ZZ (N_Vector#*) an output array of ng NVECTOR arrays

Return value Returns an int with value 0 for success and a non-zero value otherwise.

N_VLinearCombinationVectorArray ‘

Call ier = N_VLinearCombinationVectorArray(nv, ns, c, XX, 2);

Description This routine computes the linear combination of ng vector arrays containing n, vectors
with n elements:

ns—1

Zj’i:E CkThji, t=0,...,n—1 7=0,...,n,—1,
k=0

where c is an array of ng scalars (type realtype*), X X (type N_Vector**) is an array
of ng vector arrays each containing n, vectors to be summed into the output vector
array of n, vectors Z (type N_Vectorx). If the output vector array Z is one of the
vector arrays in X X, then it must be the first vector array in X X.

Arguments nv (int) the number of vectors in the vector arrays
ns (int) the number of scalars in ¢ and vector arrays in YY and ZZ
c (realtype*) an array of ng scalars
XX (N_Vector#*) an array of ny, NVECTOR arrays
Z (N_Vector*) an output array NVECTOR objects

Return value Returns an int with value 0 for success and a non-zero value otherwise.

7.1.4 NVECTOR local reduction functions

Local reduction operations are intended to reduce parallel communication on distributed memory
systems, particularly when NVECTOR objects are combined together within a
NVECTOR_MPIMANYVECTOR object (see Section 7.16). If a particular NVECTOR implementation de-
fines a local reduction operation as NULL, the NVECTOR_MPIMANYVECTOR module will automati-
cally call standard vector reduction operations as necessary to complete the desired operation. All
SUNDIALS-provided NVECTOR implementations include these local reduction operations, which may
be used as templates for user-defined NVECTOR implementations.

| N_vDotProdLocal

Call d = N_VDotProdLocal(x, y);
Description This routine computes the MPI task-local portion of the ordinary dot product of x and
y:
Niocal—1
d= Yz,
i=0

where njyeq; corresponds to the number of components in the vector on this MPI task
(or Nypeqr = n for MPI-unaware applications).

Arguments x (N_Vector) a NVECTOR object
y (N_Vector) a NVECTOR object

Return value realtype

F2003 Name FN_VDotProdLocal

7.1 The NVECTOR API 125

’ N_VMaxNormLocal

Call m = N_VMaxNormLocal (x);
Description This routine computes the MPI task-local portion of the maximum norm of the N_Vector
X:
m= max |z,
0<i<Niocal

where njyeq; corresponds to the number of components in the vector on this MPI task
(or nypear = n for MPI-unaware applications).

Arguments x (N_Vector) a NVECTOR object
Return value realtype

F2003 Name FN_VMaxNormLocal

N_VMinLocal

Call m = N_VMinLocal(x);
Description This routine computes the smallest element of the MPI task-local portion of the N_Vector
X:
m= min 1z,
0<i<niocal

where njycq; corresponds to the number of components in the vector on this MPI task
(or Nyoeqr = n for MPI-unaware applications).

Arguments x (N_Vector) a NVECTOR object
Return value realtype
F2003 Name FN_VMinLocal

| N_VLiNormLocal
Call n = N_VL1NormLocal(x);

Description This routine computes the MPI task-local portion of the £; norm of the N_Vector x:

Niocal —1

n= > el

i=0
where njyeqr corresponds to the number of components in the vector on this MPI task
(or Nyoeqr = n for MPI-unaware applications).
Arguments x (N_Vector) a NVECTOR object
Return value realtype
F2003 Name FN_VL1NormLocal

N_VWSqrSumLocal

Call s = N_VWSqrSumLocal (x,w) ;

Description This routine computes the MPI task-local portion of the weighted squared sum of the
N_Vector x with weight vector w:

Niocal —1
s= > (zaw)?
=0

where njyeq; corresponds to the number of components in the vector on this MPI task
(or Nypear = n for MPI-unaware applications).

126 Description of the NVECTOR module

Arguments x (N_Vector) a NVECTOR object
w (N_Vector) a NVECTOR object containing weights

Return value realtype
F2003 Name FN_VWSqrSumLocal

N_VWSqrSumMaskLocal

Call s = N_VWSqrSumMaskLocal (x,w,id);

Description This routine computes the MPI task-local portion of the weighted squared sum of the
N_Vector x with weight vector w built using only the elements of x corresponding to
positive elements of the N_Vector id:

Niocal —1
1 a>0
= w; H (id;))? h H(a) =
m ; (z;w;H(id;))*, where (@) {O @<

and nypeq; corresponds to the number of components in the vector on this MPT task (or
Nocal = 1 for MPI-unaware applications).
Arguments x (N_Vector) a NVECTOR object
w (N_Vector) a NVECTOR object containing weights
id (N_Vector) a NVECTOR object used as a mask
Return value realtype
F2003 Name FN_VWSqrSumMaskLocal

’ N_VInvTestLocal ‘
Call t = N_VInvTestLocal(x, z);

Description Sets the MPI task-local components of the N_Vector z to be the inverses of the compo-
nents of the N_Vector x, with prior testing for zero values:
Z; = 10/5171, 1= 07 <y Niocal — 17
where njyeq; corresponds to the number of components in the vector on this MPI task
(or Nypear = n for MPI-unaware applications).
Arguments x (N_Vector) a NVECTOR object
z (N_Vector) an output NVECTOR object

Return value Returns a booleantype with the value SUNTRUE if all task-local components of x are
nonzero (successful inversion) and with the value SUNFALSE otherwise.

F2003 Name FN_VInvTestLocal

’ N_VConstrMaskLocal ‘
Call t = N_VConstrMaskLocal(c,x,m);

Description Performs the following constraint tests:
;>0 if ¢ =2,
z; <0 if ¢ =-1,
r; <0 if ¢;=-2,and
no test if ¢; =0,
for all MPI task-local components of the vectors. It sets a mask vector m, with elements

equal to 1.0 where the constraint test failed, and 0.0 where the test passed. This routine
is used only for constraint checking.

7.1 The NVECTOR API 127

Arguments ¢ (realtype) scalar constraint value
x (N_Vector) a NVECTOR object

m (N_Vector) output mask vector

Return value Returns a booleantype with the value SUNFALSE if any task-local element failed the
constraint test and the value SUNTRUE if all passed.

F2003 Name FN_VConstrMaskLocal

] N_VMinQuotientLocal \

Call ming = N_VMinQuotientLocal (num,denom) ;

Description This routine returns the minimum of the quotients obtained by term-wise dividing num;
by denom;, for all MPI task-local components of the vectors. A zero element in denom
will be skipped. If no such quotients are found, then the large value BIG_REAL (defined
in the header file sundials_types.h) is returned.

Arguments num (N_Vector) a NVECTOR object used as the numerator

denom (N_Vector) a NVECTOR object used as the denominator
Return value realtype

F2003 Name FN_VMinQuotientLocal

7.1.5 NVECTOR exchange operations

The following vector exchange operations are also optional and are intended only for use when in-
terfacing with the XBraid library for parallel-in-time integration. In that setting these operations
are required but are otherwise unused by SUNDIALS packages and may be set to NULL. For each
operation, we give the function signature, a description of the expected behavior, and an example of
the function usage.

N_VBufSize

Call flag = N_VBufSize(N_Vector x, sunindextype *size);

Description = This routine returns the buffer size need to exchange in the data in the vector x between
computational nodes.

Arguments x (N_Vector) a NVECTOR object

size (sunindextype*) the size of the message buffer
Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VBufSize

N_VBufPack

Call flag = N_VBufPack(N_Vector x, void *buf);
Description This routine fills the exchange buffer buf with the vector data in x.

Arguments x (N_Vector) a NVECTOR object
buf (sunindextype*) the exchange buffer to pack

Return value Returns an int with value 0 for success and a non-zero value otherwise.

F2003 Name FN_VBufPack

128 Description of the NVECTOR module

N_VBufUnpack

Call flag = N_VBufUnpack(N_Vector x, void *buf);
Description This routine unpacks the data in the exchange buffer buf into the vector x.

Arguments x (N_Vector) a NVECTOR object
buf (sunindextypex*) the exchange buffer to unpack

Return value Returns an int with value 0 for success and a non-zero value otherwise.
F2003 Name FN_VBufUnpack

7.1.6 NVECTOR utility functions

To aid in the creation of custom NVECTOR modules the generic NVECTOR module provides three utility
functions N_VNewEmpty, N_-VCopyOps and N_VFreeEmpty. When used in custom NVECTOR constructors
and clone routines these functions will ease the introduction of any new optional vector operations to
the NVECTOR API by ensuring only required operations need to be set and all operations are copied
when cloning a vector.

To aid the use of arrays of NVECTOR objects, the generic NVECTOR module also provides the utility
functions N_VCloneVectorArray, N.VCloneVectorArrayEmpty, and N_VDestroyVectorArray.

N_VNewEmpty

Call v = N_VNewEmpty () ;

Description The function N_VNewEmpty allocates a new generic NVECTOR object and initializes its
content pointer and the function pointers in the operations structure to NULL.

Arguments None

Return value This function returns an N_Vector object. If an error occurs when allocating the object,
then this routine will return NULL.

F2003 Name FN_VNewEmpty

N_VCopyOps

Call retval = N_VCopyOps(w, v);

Description The function N_VCopyOps copies the function pointers in the ops structure of w into the
ops structure of v.

Arguments w (N_Vector) the vector to copy operations from
v (N_Vector) the vector to copy operations to

Return value This returns 0 if successful and a non-zero value if either of the inputs are NULL or the
ops structure of either input is NULL.

F2003 Name FN_VCopyOps

N_VFreeEmpty

Call N_VFreeEmpty (v) ;

Description This routine frees the generic N_Vector object, under the assumption that any implementation-
specific data that was allocated within the underlying content structure has already been
freed. It will additionally test whether the ops pointer is NULL, and, if it is not, it will
free it as well.

Arguments v (N_Vector)
Return value None
F2003 Name FN_VFreeEmpty

7.1 The NVECTOR API 129

N_VCloneEmptyVectorArray

Call vecarray = N_VCloneEmptyVectorArray(count, w);

Description Creates an array of count variables of type N_Vector, each of the same type as the exist-
ing N_Vector w. It achieves this by calling the implementation-specific N_-VCloneEmpty
operation.

Arguments count (int) the size of the vector array
W (N_Vector) the vector to clone

Return value Returns an array of count N_Vector objects if successful, or NULL if an error occurred
while cloning.

N_VCloneVectorArray

Call vecarray = N_VCloneVectorArray(count, w);

Description Creates an array of count variables of type N_Vector, each of the same type as the
existing N_Vector w. It achieves this by calling the implementation-specific N_-VClone
operation.

Arguments count (int) the size of the vector array
W (N_Vector) the vector to clone

Return value Returns an array of count N_Vector objects if successful, or NULL if an error occurred
while cloning.

N_VDestroyVectorArray ‘

Call N_VDestroyVectorArray(count, w);

Description Destroys (frees) an array of variables of type N_Vector. It depends on the implementation-
specific N_VDestroy operation.

Arguments vs (N_Vectorx*) the array of vectors to destroy

count (int) the size of the vector array

Return value None

N_VNewVectorArray

Call vecarray = N_VNewVectorArray(count);

Description Returns an empty N_Vector array large enough to hold count N_Vector objects. This
function is primarily meant for users of the Fortran 2003 interface.

Arguments count (int) the size of the vector array
Return value Returns a N_Vectorx if successful, Returns NULL if an error occurred.

Notes Users of the Fortran 2003 interface to the N_-VManyVector or N.-VMPIManyVector will need
this to create an array to hold the subvectors. Note that this function does restrict the
the max number of subvectors usable with the N_VManyVector and N_VMPIManyVector
to the max size of an int despite the ManyVector implementations accepting a subvector
count larger than this value.

F2003 Name FN_VNewVectorArray

130 Description of the NVECTOR module

Table 7.1: Vector Identifications associated with vector kernels supplied with SUNDIALS.

Vector ID Vector type ID Value
SUNDIALS NVEC_SERIAL Serial 0
SUNDIALS NVEC_PARALLEL Distributed memory parallel (MPT) 1
SUNDIALS_NVEC_OPENMP OpenMP shared memory parallel 2
SUNDIALS_NVEC_PTHREADS PThreads shared memory parallel 3
SUNDIALS_NVEC_PARHYP hypre ParHyp parallel vector 4
SUNDIALS_NVEC_PETSC PETSc parallel vector 5
SUNDIALS_NVEC_CUDA CUDA vector 6
SUNDIALS_NVEC_HIP HIP vector 7
SUNDIALS_NVEC_SYCL SYCL vector 8
SUNDIALS NVEC_RAJA RAJA vector 9
SUNDIALS_NVEC_OPENMPDEV OpenMP vector with device offloading 10
SUNDIALS_NVEC_TRILINOS Trilinos Tpetra vector 11
SUNDIALS NVEC_MANYVECTOR “ManyVector” vector 12
SUNDIALS_NVEC_MPIMANYVECTOR | MPI-enabled “ManyVector” vector 13
SUNDIALS NVEC_MPIPLUSX MPI+X vector 14
SUNDIALS_NVEC_CUSTOM User-provided custom vector 15

N_VGetVecAtIndexVectorArray

Call v = N_VGetVecAtIndexVectorArray(vecs, index);

Description Returns the N_Vector object stored in the vector array at the provided index. This
function is primarily meant for users of the Fortran 2003 interface.

Arguments vecs (N_Vector®) the array of vectors to index
index (int) the index of the vector to return

Return value Returns the N_Vector object stored in the vector array at the provided index. Returns
NULL if an error occurred.

F2003 Name FN_VGetVecAtIndexVectorArray

N_VSetVecAtIndexVectorArray

Call N_VSetVecAtIndexVectorArray(vecs, index, v);

Description Sets the N_Vector object stored in the vector array at the provided index. This function
is primarily meant for users of the Fortran 2003 interface.

Arguments vecs (N_Vector*) the array of vectors to index
index (int) the index of the vector to return
v (N_Vector) the vector to store at the index

Return value None
F2003 Name FN_VSetVecAtIndexVectorArray

7.1.7 NVECTOR identifiers

Each NVECTOR implementation included in SUNDIALS has a unique identifier specified in enumeration
and shown in Table 7.1.

7.1.8 The generic NVECTOR module implementation

The generic N_Vector type is a pointer to a structure that has an implementation-dependent content
field containing the description and actual data of the vector, and an ops field pointing to a structure
with generic vector operations. The type N_Vector is defined as

7.1 The NVECTOR API 131

typedef struct _generic_N_Vector *N_Vector;

struct _generic_N_Vector {
void *content;
struct _generic_N_Vector_Ops *ops;

};

The _generic N Vector Ops structure is essentially a list of pointers to the various actual vector
operations, and is defined as

struct _generic_N_Vector_Ops {
N_Vector_ID (*nvgetvectorid) (N_Vector);

N_Vector (¥nvclone) (N_Vector) ;

N_Vector (*nvcloneempty) (N_Vector) ;

void (*nvdestroy) (N_Vector) ;

void (*nvspace) (N_Vector, sunindextype *, sunindextype *);
realtypex* (*nvgetarraypointer) (N_Vector) ;

realtypex* (*nvgetdevicearraypointer) (N_Vector) ;

void (*nvsetarraypointer) (realtype *, N_Vector);
voidx* (*nvgetcommunicator) (N_Vector) ;

sunindextype (*nvgetlength) (N_Vector);

void (*nvlinearsum) (realtype, N_Vector, realtype, N_Vector, N_Vector);
void (*nvconst) (realtype, N_Vector);

void (*nvprod) (N_Vector, N_Vector, N_Vector);

void (*nvdiv) (N_Vector, N_Vector, N_Vector);

void (*nvscale) (realtype, N_Vector, N_Vector);

void (*nvabs) (N_Vector, N_Vector);

void (*nvinv) (N_Vector, N_Vector);

void (*nvaddconst) (N_Vector, realtype, N_Vector);
realtype (*nvdotprod) (N_Vector, N_Vector);

realtype (*nvmaxnorm) (N_Vector) ;

realtype (*nvwrmsnorm) (N_Vector, N_Vector);

realtype (*nvwrmsnormmask) (N_Vector, N_Vector, N_Vector);
realtype (*nvmin) (N_Vector) ;

realtype (*nvwl2norm) (N_Vector, N_Vector);

realtype (*nvlinorm) (N_Vector);

void (*nvcompare) (realtype, N_Vector, N_Vector);

booleantype (*nvinvtest)(N_Vector, N_Vector);
booleantype (*nvconstrmask) (N_Vector, N_Vector, N_Vector);

realtype (*nvminquotient) (N_Vector, N_Vector);

int (*nvlinearcombination) (int, realtype*, N_Vector*, N_Vector);

int (*nvscaleaddmulti) (int, realtype*, N_Vector, N_Vector*, N_Vectorx);

int (*nvdotprodmulti) (int, N_Vector, N_Vector*, realtype*);

int (*nvlinearsumvectorarray) (int, realtype, N_Vector*, realtype,

N_Vector*, N_Vectorx*);

int (*nvscalevectorarray) (int, realtype*, N_Vector*, N_Vectorx);

int (*nvconstvectorarray) (int, realtype, N_Vector*);

int (*nvwrmsnomrvectorarray) (int, N_Vector*, N_Vector*, realtypex);

int (*nvwrmsnomrmaskvectorarray) (int, N_Vector*, N_Vector*, N_Vector,
realtypex);

int (*nvscaleaddmultivectorarray) (int, int, realtypex, N_Vector*,
N_Vector*x, N_Vector*x);

int (*nvlinearcombinationvectorarray) (int, int, realtype*, N_Vectorxx,

N_Vector*) ;

realtype (*nvdotprodlocal) (N_Vector, N_Vector);

132 Description of the NVECTOR module

realtype (*nvmaxnormlocal) (N_Vector) ;
realtype (*nvminlocal) (N_Vector) ;
realtype (*nvlinormlocal) (N_Vector) ;

booleantype (*nvinvtestlocal) (N_Vector, N_Vector);
booleantype (*nvconstrmasklocal) (N_Vector, N_Vector, N_Vector);

realtype (*nvminquotientlocal) (N_Vector, N_Vector);

realtype (*nvwsqrsumlocal) (N_Vector, N_Vector);

realtype (*nvwsqrsummasklocal (N_Vector, N_Vector, N_Vector);
int (*nvbufsize) (N_Vector, sunindextype *);

int (*nvbufpack) (N_Vector, voidx);

int (*nvbufunpack) (N_Vector, voidx);

};

The generic NVECTOR module defines and implements the vector operations acting on an N_Vector.
These routines are nothing but wrappers for the vector operations defined by a particular NVECTOR
implementation, which are accessed through the ops field of the N_Vector structure. To illustrate
this point we show below the implementation of a typical vector operation from the generic NVECTOR
module, namely N_VScale, which performs the scaling of a vector x by a scalar c:

void N_VScale(realtype c, N_Vector x, N_Vector z)
{
z->ops->nvscale(c, x, 2z);

}

Section 7.1.1 defines a complete list of all standard vector operations defined by the generic NVECTOR
module. Sections 7.1.2, 7.1.3 and 7.1.4 list optional fused, vector array and local reduction operations,
respectively.

The Fortran 2003 interface provides a bind(C) derived-type for the _generic_N_Vector and the
_generic N Vector Ops structures. Their definition is given below.

type, bind(C), public :: N_Vector
type(C_PTR), public :: content
type (C_PTR), public :: ops

end type N_Vector

type, bind(C), public :: N_Vector_Ops

type (C_FUNPTR), public :: nvgetvectorid
type (C_FUNPTR), public :: nvclone

type (C_FUNPTR), public :: nvcloneempty

type (C_FUNPTR), public :: nvdestroy

type (C_FUNPTR), public :: nvspace

type (C_FUNPTR), public :: nvgetarraypointer
type (C_FUNPTR), public :: nvsetarraypointer
type (C_FUNPTR), public :: nvgetcommunicator
type (C_FUNPTR), public :: nvgetlength

type (C_FUNPTR), public :: nvlinearsum

type (C_FUNPTR), public :: nvconst

type (C_FUNPTR), public :: nvprod

type (C_FUNPTR), public :: nvdiv

type (C_FUNPTR), public :: nvscale

type (C_FUNPTR), public :: nvabs

type (C_FUNPTR), public :: nvinv

type (C_FUNPTR), public :: nvaddconst

type (C_FUNPTR), public :: nvdotprod

type (C_FUNPTR), public :: nvmaxnorm

type (C_FUNPTR), public :: nvwrmsnorm

7.1 The NVECTOR API 133

type (C_FUNPTR), public :: nvwrmsnormmask

type (C_FUNPTR), public :: nvmin

type (C_FUNPTR), public :: nvwl2norm

type (C_FUNPTR), public :: nvllnorm

type (C_FUNPTR), public :: nvcompare

type (C_FUNPTR), public :: nvinvtest

type (C_FUNPTR), public :: nvconstrmask

type (C_FUNPTR), public :: nvminquotient

type (C_FUNPTR), public :: nvlinearcombination
type (C_FUNPTR), public :: nvscaleaddmulti

type (C_FUNPTR), public :: nvdotprodmulti

type (C_FUNPTR), public :: nvlinearsumvectorarray
type (C_FUNPTR), public :: nvscalevectorarray
type (C_FUNPTR), public :: nvconstvectorarray
type (C_FUNPTR), public :: nvwrmsnormvectorarray

type (C_FUNPTR), public :: nvwrmsnormmaskvectorarray
type (C_FUNPTR), public :: nvscaleaddmultivectorarray
type (C_FUNPTR), public :: nvlinearcombinationvectorarray

type (C_FUNPTR), public :: nvdotprodlocal
type (C_FUNPTR), public :: nvmaxnormlocal
type (C_FUNPTR) , public :: nvminlocal

type (C_FUNPTR), public :: nvllnormlocal

type (C_FUNPTR), public :: nvinvtestlocal
type (C_FUNPTR), public :: nvconstrmasklocal
type (C_FUNPTR), public :: nvminquotientlocal
type (C_FUNPTR), public :: nvwsqrsumlocal
type (C_FUNPTR), public :: nvwsqrsummasklocal
type (C_FUNPTR), public :: nvbufsize

type (C_FUNPTR), public :: nvbufpack

type (C_FUNPTR), public :: nvbufunpack

end type N_Vector_Ops

7.1.9 Implementing a custom NVECTOR

A particular implementation of the NVECTOR module must:

e Specify the content field of N_Vector.

e Define and implement the vector operations. Note that the names of these routines should be
unique to that implementation in order to permit using more than one NVECTOR module (each
with different N_Vector internal data representations) in the same code.

e Define and implement user-callable constructor and destructor routines to create and free an
N_Vector with the new content field and with ops pointing to the new vector operations.

e Optionally, define and implement additional user-callable routines acting on the newly defined
N_Vector (e.g., a routine to print the content for debugging purposes).

e Optionally, provide accessor macros as needed for that particular implementation to be used to
access different parts in the content field of the newly defined N_Vector.

It is recommended that a user-supplied NVECTOR implementation returns the SUNDIALS_NVEC_CUSTOM
identifier from the N_VGetVectorID function.

To aid in the creation of custom NVECTOR modules the generic NVECTOR module provides two
utility functions N_VNewEmpty and N_VCopyOps. When used in custom NVECTOR constructors and
clone routines these functions will ease the introduction of any new optional vector operations to the

134 Description of the NVECTOR module

NVECTOR API by ensuring only required operations need to be set and all operations are copied when
cloning a vector.

7.1.9.1 Support for complex-valued vectors

While SUNDIALS itself is written under an assumption of real-valued data, it does provide limited
support for complex-valued problems. However, since none of the built-in NVECTOR modules supports
complex-valued data, users must provide a custom NVECTOR implementation for this task. Many of
the NVECTOR routines described in Sections 7.1.1-7.1.4 above naturally extend to complex-valued
vectors; however, some do not. To this end, we provide the following guidance:

e N_VMin and N_VMinLocal should return the minimum of all real components of the vector, i.e.,
m = min; real(x;).

e N_VConst (and similarly N_-VConstVectorArray) should set the real components of the vector to
the input constant, and set all imaginary components to zero, i.e., z; = c+0j, 1 =0,...,n — 1.

e N_VAddConst should only update the real components of the vector with the input constant,
leaving all imaginary components unchanged.

e N_VWrmsNorm, N_VWrmsNormMask, N_VWSqrSumLocal and N_VWSqrSumMaskLocal should assume
that all entries of the weight vector w and the mask vector id are real-valued.

e N_VDotProd should mathematically return a complex number for complex-valued vectors; as
this is not possible with SUNDIALS’ current realtype, this routine should be set to NULL in the
custom NVECTOR implementation.

e N_VCompare, N_VConstrMask, N VMinQuotient, N VConstrMaskLocal and N_VMinQuotientLocal
are ill-defined due to the lack of a clear ordering in the complex plane. These routines should
be set to NULL in the custom NVECTOR implementation.

While many SUNDIALS solver modules may be utilized on complex-valued data, others cannot.
Specifically, although both SUNNONLINSOL_NEWTON and SUNNONLINSOL_FIXEDPOINT may be used
with any of the IVP solvers (CVODE, CVODES, IDA, IDAS and ARKODE) for complex-valued problems,
the Anderson-acceleration feature SUNNONLINSOL_FIXEDPOINT cannot be used due to its reliance on
N_VDotProd. By this same logic, the Anderson acceleration feature within KINSOL also will not work
with complex-valued vectors.

Similarly, although each package’s linear solver interface (e.g., CVLS) may be used on complex-
valued problems, none of the built-in SUNMATRIX or SUNLINSOL modules work. Hence a complex-
valued user should provide a custom SUNLINSOL (and optionally a custom SUNMATRIX) implementation
for solving linear systems, and then attach this module as normal to the package’s linear solver
interface.

Finally, constraint-handling features of each package cannot be used for complex-valued data,
due to the issue of ordering in the complex plane discussed above with N_VCompare, N_VConstrMask,
N_VMinQuotient, N_VConstrMaskLocal and N_VMinQuotientLocal.

We provide a simple example of a complex-valued example problem, including a custom complex-
valued Fortran 2003 NVECTOR module, in the files
examples/arkode/F2003_custom/ark_analytic_complex_£2003.£90,
examples/arkode/F2003_custom/fnvector_complex_mod.£90, and
examples/arkode/F2003_custom/test_fnvector_complex mod.£f90.

7.2 NVECTOR functions used by IDA

In Table 7.2 below, we list the vector functions used in the NVECTOR module used by the IDA package.
The table also shows, for each function, which of the code modules uses the function. The IDA column
shows function usage within the main integrator module, while the remaining columns show function

7.2 NVECTOR functions used by IDA 135

usage within the IDALS linear solvers interface, the IDABBDPRE preconditioner module, and the FIDA
module.

At this point, we should emphasize that the IDA user does not need to know anything about the
usage of vector functions by the IDA code modules in order to use IDA. The information is presented
as an implementation detail for the interested reader.

Table 7.2: List of vector functions usage by IDA code modules

IDA

IDALS
IDABBDPRE
FIDA

N_VGetVectorID
N_VGetLength
N_VClone | vV
N_VCloneEmpty
N_VDestroy
N_VSpace
N_VGetArrayPointer
N_VSetArrayPointer
N_VLinearSum
N_VConst
N_VProd

N_VDiv

N_VScale

N_VAbs

N_VInv
N_VAddConst
N_VMaxNorm
N_VWrmsNorm
N_VMin
N_VMinQuotient
N_VConstrMask
N_VWrmsNormMask
N_VCompare

NENEN

ANEN

NN I Y RN R NEES

(\
\

N_VLinearCombination
N_VScaleAddMulti
N_VDotProdMulti 3
N_VLinearSumVectorArray
N_VScaleVectorArray

SNENENENENENENENENENENENENENENENEN

NEN

Special cases (numbers match markings in table):

1. These routines are only required if an internal difference-quotient routine for constructing dense
or band Jacobian matrices is used.

2. This routine is optional, and is only used in estimating space requirements for IDA modules for
user feedback.

3. The optional function N_VDotProdMulti is only used when Classical Gram-Schmidt is enabled
with SPGMR or SPFGMR. The remaining operations from Tables 7.1.2 and 7.1.3 not listed above
are unused and a user-supplied NVECTOR module for IDA could omit these operations.

136 Description of the NVECTOR module

4. This routine is only used when an iterative or matrix iterative SUNLINSOL module is supplied to
IDA.

Of the functions listed in Table 7.1.1, N.VWL2Norm, N_VL1Norm, N_VInvTest, and N_VGetCommunicator
are not used by IDA. Therefore a user-supplied NVECTOR module for IDA could omit these functions
(although some may be needed by SUNNONLINSOL or SUNLINSOL modules).

7.3 The NVECTOR_SERIAL implementation

The serial implementation of the NVECTOR module provided with SUNDIALS, NVECTOR_SERIAL, defines
the content field of N_Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, and a boolean flag own_data which specifies the ownership of
data.

struct _N_VectorContent_Serial {
sunindextype length;
booleantype own_data;

realtype *data;

};

The header file to include when using this module is nvector_serial.h. The installed module
library to link to is libsundials nvecserial. l4b where .14b is typically .so for shared libraries
and .a for static libraries.

7.3.1 NVECTOR_SERIAL accessor macros

The following macros are provided to access the content of an NVECTOR_SERIAL vector. The suffix _S
in the names denotes the serial version.
e NV_CONTENT_S
This routine gives access to the contents of the serial vector N_Vector.

The assignment v_cont = NV_CONTENT_S(v) sets v_cont to be a pointer to the serial N_Vector
content structure.

Implementation:

#define NV_CONTENT_S(v) ((N_VectorContent_Serial) (v—>content))

e NV_OWN_DATA_S, NV_DATA_S, NV_LENGTH_S
These macros give individual access to the parts of the content of a serial N_Vector.

The assignment v_data = NV_DATA_S(v) sets v_data to be a pointer to the first component of
the data for the N_Vector v. The assignment NV_DATA_S(v) = v_data sets the component array
of v to be v_data by storing the pointer v_data.

The assignment v_len = NV_LENGTH_S(v) sets v_len to be the length of v. On the other hand,
the call NV_LENGTH_S(v) = len_v sets the length of v to be len_v.

Implementation:

#define NV_OWN_DATA_S(v) (NV_CONTENT_S(v)->own_data)
#define NV_DATA_S(v) (NV_CONTENT_S(v)->data)

#define NV_LENGTH_S(v) (NV_CONTENT_S(v)->length)

e NV_Ith S
This macro gives access to the individual components of the data array of an N_Vector.

The assignment r = NV_Ith_ S(v,i) sets r to be the value of the i-th component of v. The
assignment NV_Ith S(v,i) = r sets the value of the i-th component of v to be r.

7.3 The NVECTOR_SERIAL implementation 137

Here ¢ ranges from 0 to n — 1 for a vector of length n.
Implementation:
#define NV_Ith_S(v,i) (NV_DATA_S(v)[i])

7.3.2 NVECTOR_SERIAL functions

The NVECTOR_SERIAL module defines serial implementations of all vector operations listed in Tables
7.1.1, 7.1.2, 7.1.3 and 7.1.4. Their names are obtained from those in these tables by appending the
suffix _Serial (e.g. N_VDestroy_Serial). All the standard vector operations listed in 7.1.1 with
the suffix _Serial appended are callable via the FORTRAN 2003 interface by prepending an ‘F’ (e.g.
FN_VDestroy_Serial).

The module NVECTOR_SERIAL provides the following additional user-callable routines:

N_VNew_Serial ‘

Prototype = N_Vector N_VNew Serial (sunindextype vec_length);

Description This function creates and allocates memory for a serial N_Vector. Its only argument is
the vector length.

F2003 Name This function is callable as FN_VNew_Serial when using the Fortran 2003 interface mod-
ule.

N_VNewEmpty_Serial

Prototype N_Vector N_VNewEmpty_Serial(sunindextype vec_length);
Description This function creates a new serial N_Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN_VNewEmpty_Serial when using the Fortran 2003 interface
module.

N_VMake Serial |

Prototype N_Vector N_VMake_Serial(sunindextype vec_length, realtype *v_data);

Description This function creates and allocates memory for a serial vector with user-provided data
array.

(This function does not allocate memory for v_data itself.)

F2003 Name This function is callable as FN_VMake Serial when using the Fortran 2003 interface
module.

N_VCloneVectorArray_ Serial ‘

Prototype N_Vector *N_VCloneVectorArray Serial(int count, N_Vector w);
Description This function creates (by cloning) an array of count serial vectors.

F2003 Name This function is callable as FN_VCloneVectorArray_Serial when using the Fortran 2003
interface module.

N_VCloneVectorArrayEmpty_Serial ‘

Prototype N_Vector *N_VCloneVectorArrayEmpty_Serial(int count, N_Vector w);

Description This function creates (by cloning) an array of count serial vectors, each with an empty
(NULL) data array.

F2003 Name This function is callable as FN_VCloneVectorArrayEmpty_Serial when using the For-
tran 2003 interface module.

138 Description of the NVECTOR module

N_VDestroyVectorArray Serial

Prototype void N_VDestroyVectorArray Serial (N_Vector *vs, int count);

Description This function frees memory allocated for the array of count variables of type N_Vector
created with N_VCloneVectorArray_Serial or with
N_VCloneVectorArrayEmpty_Serial.

F2003 Name This function is callable as FN_VDestroyVectorArray Serial when using the Fortran
2003 interface module.

|N_VPrint Serial |

Prototype void N_VPrint_Serial(N_Vector v);
Description This function prints the content of a serial vector to stdout.

F2003 Name This function is callable as FN_VPrint_Serial when using the Fortran 2003 interface
module.

N_VPrintFile Serial

Prototype void N_VPrintFile_Serial(N_Vector v, FILE *outfile);
Description This function prints the content of a serial vector to outfile.

F2003 Name This function is callable as FN_VPrintFile_Serial when using the Fortran 2003 interface
module.

By default all fused and vector array operations are disabled in the NVECTOR_SERIAL module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N_VNew_Serial, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N_VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N_VNew_Serial
will have the default settings for the NVECTOR_SERIAL module.

’ N_VEnableFusedOps_Serial ‘

Prototype int N_VEnableFusedOps_Serial(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the serial vector. The return value is O for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableFusedOps_Serial when using the Fortran 2003
interface module.

N_VEnableLinearCombination_Serial ‘

Prototype int N_VEnableLinearCombination_Serial(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the serial vector. The return value is O for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearCombination_Serial when using the For-
tran 2003 interface module.

7.3 The NVECTOR_SERIAL implementation 139

N_VEnableScaleAddMulti_Serial ‘

Prototype int N_VEnableScaleAddMulti_Serial(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the serial vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleAddMulti_Serial when using the Fortran
2003 interface module.

N_VEnableDotProdMulti_Serial ‘
Prototype int N_VEnableDotProdMulti_Serial(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableDotProdMulti_Serial when using the Fortran
2003 interface module.

N_VEnableLinearSumVectorArray_Serial ‘

Prototype int N_VEnableLinearSumVectorArray Serial(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the serial vector. The return value is O for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearSumVectorArray_Serial when using the
Fortran 2003 interface module.

N_VEnableScaleVectorArray Serial ‘

Prototype int N,VEnableScaleVectorArray,Serial(N,Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleVectorArray_Serial when using the For-
tran 2003 interface module.

N_VEnableConstVectorArray Serial ‘

Prototype int N_VEnableConstVectorArray_Serial(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the serial vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableConstVectorArray Serial when using the For-
tran 2003 interface module.

N_VEnableWrmsNormVectorArray_Serial ‘

Prototype int N_VEnableWrmsNormVectorArray Serial (N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the serial vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

140 Description of the NVECTOR module

F2003 Name This function is callable as FN_VEnableWrmsNormVectorArray_Serial when using the
Fortran 2003 interface module.

N_VEnableWrmsNormMaskVectorArray Serial ‘

Prototype int N_VEnableWrmsNormMaskVectorArray Serial (N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the serial vector. The return value is 0 for success and -1 if
the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableWrmsNormMaskVectorArray Serial when using
the Fortran 2003 interface module.

N_VEnableScaleAddMultiVectorArray_Serial ‘

Prototype = int N_VEnableScaleAddMultiVectorArray Serial(N_Vector v,
booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the serial vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N_VEnableLinearCombinationVectorArray_Serial ‘

Prototype int N_VEnableLinearCombinationVectorArray Serial(N_Vector v,
booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the serial vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

e When looping over the components of an N_Vector v, it is more efficient to first obtain the
component array via v_data = NV_DATA_S(v) and then access v_data[i] within the loop than
it is to use NV_Ith_S(v,i) within the loop.

e N VNewEmpty_Serial, N_VMake Serial, and N_VCloneVectorArrayEmpty_Serial set the field
own_data = SUNFALSE. N_VDestroy_Serial and N_VDestroyVectorArray_Serial will not at-
tempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

e To maximize efficiency, vector operations in the NVECTOR_SERIAL implementation that have
more than one N_Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

7.3.3 NVECTOR_SERIAL Fortran interfaces

The NVECTOR_SERIAL module provides a FORTRAN 2003 module as well as FORTRAN 77 style interface
functions for use from FORTRAN applications.

7.4 The NVECTOR_PARALLEL implementation 141

FORTRAN 2003 interface module

The fnvector_serial mod FORTRAN module defines interfaces to all NVECTOR_SERIAL C functions
using the intrinsic iso_c_binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N_VNew_Serial is
interfaced as FN_VNew_Serial.

The FORTRAN 2003 NVECTOR-SERIAL interface module can be accessed with the use statement,
i.e. use fnvector_serial mod, and linking to the library libsundials fnvectorserial mod./ib in
addition to the C library. For details on where the library and module file fnvector_serial mod.mod
are installed see Appendix A. We note that the module is accessible from the FORTRAN 2003 SUNDIALS
integrators without separately linking to the 1ibsundials_fnvectorserial _mod library.

FORTRAN 77 interface functions

For solvers that include a FORTRAN 77 interface module, the NVECTOR_SERIAL module also includes a
FORTRAN-callable function FNVINITS (code, NEQ, IER), to initialize this NVECTOR_SERIAL module.
Here code is an input solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKODE); NEQ is the
problem size (declared so as to match C type long int); and IER is an error return flag equal 0 for
success and -1 for failure.

7.4 The NVECTOR_PARALLEL implementation

The NVECTOR_PARALLEL implementation of the NVECTOR module provided with SUNDIALS is based on
MPI. It defines the content field of N_Vector to be a structure containing the global and local lengths
of the vector, a pointer to the beginning of a contiguous local data array, an MPI communicator, and
a boolean flag own_data indicating ownership of the data array data.

struct _N_VectorContent_Parallel {
sunindextype local_length;
sunindextype global_length;
booleantype own_data;
realtype *data;
MPI_Comm comm;

};

The header file to include when using this module is nvector_parallel.h. The installed module
library to link to is libsundials nvecparallel. lib where . 14b is typically .so for shared libraries
and .a for static libraries.

7.4.1 NVECTOR_PARALLEL accessor macros

The following macros are provided to access the content of a NVECTOR_PARALLEL vector. The suffix
_P in the names denotes the distributed memory parallel version.
e NV_CONTENT_P
This macro gives access to the contents of the parallel vector N_Vector.

The assignment v_cont = NV_CONTENT_P(v) sets v_cont to be a pointer to the N_Vector content
structure of type struct _N_VectorContent Parallel.

Implementation:

#define NV_CONTENT_P(v) ((N_VectorContent_Parallel) (v->content))

e NV_OWN_DATA_P, NV_.DATA_P, NV_LOCLENGTH_P, NV_GLOBLENGTH_P

These macros give individual access to the parts of the content of a parallel N_Vector.

142 Description of the NVECTOR module

The assignment v_data = NV_DATA P(v) sets v_data to be a pointer to the first component of
the local data for the N_Vector v. The assignment NV_DATA P(v) = v_data sets the component
array of v to be v_data by storing the pointer v_data.

The assignment v_1len = NV_LOCLENGTH_P(v) sets v_1len to be the length of the local part of
v. The call NV_LENGTH_P(v) = llen_v sets the local length of v to be 1len_v.

The assignment v_glen = NV_GLOBLENGTH_P(v) sets v_glen to be the global length of the vector
v. The call NV_GLOBLENGTH_P(v) = glen_v sets the global length of v to be glen_v.

Implementation:
#define NV_OWN_DATA_P(v) (NV_CONTENT_P(v)->own_data)
#define NV_DATA_P(v) (NV_CONTENT_P(v)->data)

#define NV_LOCLENGTH_P(v) (NV_CONTENT_P(v)->local_length)
#define NV_GLOBLENGTH_P(v) (NV_CONTENT_P(v)->global_length)

e NV_COMM_P
This macro provides access to the MPI communicator used by the NVECTOR_PARALLEL vectors.
Implementation:

#define NV_COMM_P(v) (NV_CONTENT_P(v)->comm)

e NV_.Ith P
This macro gives access to the individual components of the local data array of an N_Vector.

The assignment r = NV_Ith P(v,i) sets r to be the value of the i-th component of the local
part of v. The assignment NV_Ith P(v,i) = r sets the value of the i-th component of the local
part of v to be r.

Here i ranges from 0 to n — 1, where n is the local length.
Implementation:

#define NV_Ith_P(v,i) (NV_DATA_P(v)[i])

7.4.2 NVECTOR_PARALLEL functions

The NVECTOR_PARALLEL module defines parallel implementations of all vector operations listed in
Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4. Their names are obtained from those in these tables by appending
the suffix _Parallel (e.g. N_VDestroy Parallel). The module NVECTOR_PARALLEL provides the
following additional user-callable routines:

N_VNew Parallel |

Prototype N_Vector N_VNew_Parallel (MPI_Comm comm, sunindextype local_length,
sunindextype global_length);

Description This function creates and allocates memory for a parallel vector.

F2003 Name This function is callable as FN_VNew_Parallel when using the Fortran 2003 interface
module.

N_VNewEmpty_Parallel

Prototype N_Vector N_VNewEmpty_Parallel(MPI_Comm comm, sunindextype local_length,
sunindextype global_length);

Description This function creates a new parallel N_Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN_VNewEmpty_Parallel when using the Fortran 2003 inter-
face module.

7.4 The NVECTOR_PARALLEL implementation 143

N_VMake_Parallel

Prototype N_Vector N_VMake Parallel(MPI_Comm comm, sunindextype local_length,
sunindextype global_length, realtype *v_data);

Description This function creates and allocates memory for a parallel vector with user-provided data
array. This function does not allocate memory for v_data itself.

F2003 Name This function is callable as FN_VMake Parallel when using the Fortran 2003 interface
module.

N_VCloneVectorArray Parallel \

Prototype N_Vector #N_VCloneVectorArray Parallel(int count, N_Vector w);
Description This function creates (by cloning) an array of count parallel vectors.

F2003 Name This function is callable as FN_VCloneVectorArray Parallel when using the Fortran
2003 interface module.

N_VCloneVectorArrayEmpty_Parallel ‘

Prototype N_Vector *N_VCloneVectorArrayEmpty Parallel(int count, N_Vector w);

Description This function creates (by cloning) an array of count parallel vectors, each with an empty
(NULL) data array.

F2003 Name This function is callable as FN_VCloneVectorArrayEmpty_Parallel when using the For-
tran 2003 interface module.

N_VDestroyVectorArray Parallel

Prototype void N_VDestroyVectorArray Parallel(N_Vector *vs, int count);

Description This function frees memory allocated for the array of count variables of type N_Vector
created with N_VCloneVectorArray Parallel or with
N_VCloneVectorArrayEmpty_Parallel.

F2003 Name This function is callable as FN_VDestroyVectorArray Parallel when using the Fortran
2003 interface module.

N_VGetLocalLength Parallel

Prototype sunindextype N_VGetLocallength Parallel(N_Vector v);
Description This function returns the local vector length.

F2003 Name This function is callable as FN_VGetLocalLength Parallel when using the Fortran 2003
interface module.

N_VPrint Parallel |

Prototype void N_VPrint Parallel(N_Vector v);
Description This function prints the local content of a parallel vector to stdout.

F2003 Name This function is callable as FN_VPrint Parallel when using the Fortran 2003 interface
module.

144 Description of the NVECTOR module

N_VPrintFile Parallel

Prototype void N_VPrintFile Parallel(N_Vector v, FILE x*outfile);
Description This function prints the local content of a parallel vector to outfile.

F2003 Name This function is callable as FN_VPrintFile Parallel when using the Fortran 2003 in-
terface module.

By default all fused and vector array operations are disabled in the NVECTOR_PARALLEL module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N_-VNew_Parallel, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N_VClone with that vector.
This guarantees the new vectors will have the same operations enabled/disabled as cloned vectors
inherit the same enable/disable options as the vector they are cloned from while vectors created with
N_VNew_Parallel will have the default settings for the NVECTOR_PARALLEL module.

N_VEnableFusedOps Parallel |

Prototype int N_VEnableFusedOps_Parallel(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableFusedOps_Parallel when using the Fortran 2003
interface module.

N_VEnableLinearCombination Parallel ‘

Prototype int N_VEnableLinearCombination Parallel(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the parallel vector. The return value is O for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearCombination Parallel when using the
Fortran 2003 interface module.

N_VEnableScaleAddMulti_Parallel ‘
Prototype int N_VEnableScaleAddMulti Parallel(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the parallel vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleAddMulti_Parallel when using the For-
tran 2003 interface module.

N_VEnableDotProdMulti Parallel ‘
Prototype int N_VEnableDotProdMulti_Parallel(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableDotProdMulti Parallel when using the Fortran
2003 interface module.

7.4 The NVECTOR_PARALLEL implementation 145

N_VEnableLinearSumVectorArray Parallel ‘

Prototype int N_VEnableLinearSumVectorArray Parallel(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the parallel vector. The return value is O for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearSumVectorArray Parallel when using
the Fortran 2003 interface module.

N_VEnableScaleVectorArray Parallel ‘

Prototype int N_VEnableScaleVectorArray Parallel(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleVectorArray Parallel when using the
Fortran 2003 interface module.

N_VEnableConstVectorArray Parallel ‘

Prototype int N_VEnableConstVectorArray Parallel (N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the parallel vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableConstVectorArray Parallel when using the
Fortran 2003 interface module.

N_VEnableWrmsNormVectorArray Parallel ‘

Prototype int N_VEnableWrmsNormVectorArray Parallel(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the parallel vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableWrmsNormVectorArray Parallel when using the
Fortran 2003 interface module.

N_VEnableWrmsNormMaskVectorArray Parallel ‘

Prototype int N_VEnableWrmsNormMaskVectorArray Parallel(N_Vector v, booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the parallel vector. The return value is 0 for success and -1
if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableWrmsNormMaskVectorArray Parallel when us-
ing the Fortran 2003 interface module.

N_VEnableScaleAddMultiVectorArray_Parallel ‘

Prototype int N_VEnableScaleAddMultiVectorArray Parallel(N_Vector v,
booleantype tf);
Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector
array to multiple vector arrays operation in the parallel vector. The return value is 0
for success and -1 if the input vector or its ops structure are NULL.

146 Description of the NVECTOR module

N_VEnableLinearCombinationVectorArray Parallel ‘

Prototype int N_VEnableLinearCombinationVectorArray Parallel(N_Vector v,
booleantype tf);

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the parallel vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

e When looping over the components of an N_Vector v, it is more efficient to first obtain the local
component array via v_data = NV_DATA P(v) and then access v_data[i] within the loop than
it is to use NV_Ith P(v,i) within the loop.

e N _VNewEmpty Parallel, N VMake Parallel, and N_VCloneVectorArrayEmpty Parallel set the
field own_data = SUNFALSE. N_VDestroy_Parallel and N_VDestroyVectorArray Parallel will
not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

e To maximize efficiency, vector operations in the NVECTOR_PARALLEL implementation that have
more than one N_Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

7.4.3 NVECTOR_PARALLEL Fortran interfaces

For solvers that include a FORTRAN 77 interface module, the NVECTOR_PARALLEL module also in-
cludes a FORTRAN-callable function FNVINITP(COMM, code, NLOCAL, NGLOBAL, IER), to initialize
this NVECTOR_PARALLEL module. Here COMM is the MPI communicator, code is an input solver
id (1 for cvODE, 2 for DA, 3 for KINSOL, 4 for ARKODE); NLOCAL and NGLOBAL are the local and
global vector sizes, respectively (declared so as to match C type long int); and IER is an error
return flag equal 0 for success and -1 for failure. NOTE: If the header file sundials_config.h de-
fines SUNDIALS_MPI_COMM_F2C to be 1 (meaning the MPI implementation used to build SUNDIALS
includes the MPI_Comm_f2c¢ function), then COMM can be any valid MPI communicator. Otherwise,
MPI_COMM_WORLD will be used, so just pass an integer value as a placeholder.

7.5 The NVECTOR_OPENMP implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVEC-
TOR_OPENMP, and an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown
that vectors should be of length at least 100,000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The OpenMP NVECTOR implementation provided with SUNDIALS, NVECTOR_OPENMP, defines the
content field of N_Vector to be a structure containing the length of the vector, a pointer to the
beginning of a contiguous data array, a boolean flag own_data which specifies the ownership of data,
and the number of threads. Operations on the vector are threaded using OpenMP.

struct _N_VectorContent_0OpenMP {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

7.5 The NVECTOR_OPENMP implementation 147

The header file to include when using this module is nvector_openmp.h. The installed module
library to link to is libsundials nvecopenmp. l4b where .14b is typically .so for shared libraries
and .a for static libraries. The FORTRAN module file to use when using the FORTRAN 2003 interface
to this module is fnvector_openmp_mod.mod.

7.5.1 NVECTOR_OPENMP accessor macros

The following macros are provided to access the content of an NVECTOR_OPENMP vector. The suffix
_OMP in the names denotes the OpenMP version.
e NV_CONTENT_OMP
This routine gives access to the contents of the OpenMP vector N_Vector.

The assignment v_cont = NV_CONTENT_OMP(v) sets v_cont to be a pointer to the OpenMP
N_Vector content structure.

Implementation:

#define NV_CONTENT_OMP(v) ((N_VectorContent_OpenMP) (v->content))

e NV_OWN_DATA_OMP, NV_DATA_OMP, NV_LENGTH_OMP, NV_NUM_THREADS_OMP
These macros give individual access to the parts of the content of a OpenMP N_Vector.

The assignment v_data = NV_DATA OMP(v) sets v_data to be a pointer to the first component
of the data for the N_Vector v. The assignment NV_DATA OMP(v) = v_data sets the component
array of v to be v_data by storing the pointer v_data.

The assignment v_len = NV_LENGTH_OMP(v) sets v_len to be the length of v. On the other
hand, the call NV_.LENGTH_OMP(v) = len_v sets the length of v to be len_v.

The assignment v_num_threads = NV_NUM_THREADS_OMP(v) sets v_num_threads to be the num-
ber of threads from v. On the other hand, the call NV.NUM_THREADS_OMP(v) = num_threads_v
sets the number of threads for v to be num_threads_v.

Implementation:

#define NV_OWN_DATA_OMP(v) (NV_CONTENT_OMP(v)->own_data)
#define NV_DATA_OMP(v) (NV_CONTENT_OMP(v)->data)

#define NV_LENGTH_OMP(v) (NV_CONTENT_OMP(v)->length)

#define NV_NUM_THREADS_OMP(v) (NV_CONTENT_OMP(v)->num_threads)

e NV_Ith OMP
This macro gives access to the individual components of the data array of an N_Vector.

The assignment r = NV_Ith OMP(v,i) sets r to be the value of the i-th component of v. The
assignment NV_Ith OMP(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n — 1 for a vector of length n.
Implementation:

#define NV_Ith_OMP(v,i) (NV_DATA_OMP(v) [i])

7.5.2 NVECTOR_OPENMP functions

The NVECTOR_OPENMP module defines OpenMP implementations of all vector operations listed in
Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4. Their names are obtained from those in these tables by appending
the suffix _OpenMP (e.g. N_VDestroy_OpenMP). All the standard vector operations listed in 7.1.1 with
the suffix _OpenMP appended are callable via the FORTRAN 2003 interface by prepending an ‘F’ (e.g.
FN_VDestroy_OpenMP).

The module NVECTOR_OPENMP provides the following additional user-callable routines:

148 Description of the NVECTOR module

N_VNew_OpenMP

Prototype N_Vector N_VNew_OpenMP(sunindextype vec_length, int num_threads)

Description This function creates and allocates memory for a OpenMP N_Vector. Arguments are
the vector length and number of threads.

F2003 Name This function is callable as FN_VNew_OpenMP when using the Fortran 2003 interface mod-
ule.

N_VNewEmpty_OpenMP

Prototype N_Vector N_VNewEmpty_OpenMP(sunindextype vec_length, int num_threads)
Description This function creates a new OpenMP N_Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN_VNewEmpty_OpenMP when using the Fortran 2003 interface
module.

N_VMake_OpenMP

Prototype N_Vector N_VMake_OpenMP(sunindextype vec_length, realtype *v_data,
int num_threads);

Description This function creates and allocates memory for a OpenMP vector with user-provided
data array. This function does not allocate memory for v_data itself.

F2003 Name This function is callable as FN_VMake OpenMP when using the Fortran 2003 interface
module.

N_VCloneVectorArray_OpenMP ‘

Prototype N_Vector #N_VCloneVectorArray_OpenMP(int count, N_Vector w)
Description This function creates (by cloning) an array of count OpenMP vectors.

F2003 Name This function is callable as FN_VCloneVectorArray_OpenMP when using the Fortran 2003
interface module.

N_VCloneVectorArrayEmpty_OpenMP ‘

Prototype N_Vector *N_VCloneVectorArrayEmpty_OpenMP(int count, N_Vector w)

Description This function creates (by cloning) an array of count OpenMP vectors, each with an
empty (NULL) data array.

F2003 Name This function is callable as FN_VCloneVectorArrayEmpty_OpenMP when using the For-
tran 2003 interface module.

N_VDestroyVectorArray_OpenMP

Prototype void N_VDestroyVectorArray_OpenMP(N_Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N_Vector
created with N_VCloneVectorArray_OpenMP or with N_-VCloneVectorArrayEmpty_OpenMP.

F2003 Name This function is callable as FN_VDestroyVectorArray_OpenMP when using the Fortran
2003 interface module.

7.5 The NVECTOR_OPENMP implementation 149

N_VPrint_OpenMP

Prototype = void N_VPrint_OpenMP(N_Vector v)
Description This function prints the content of an OpenMP vector to stdout.

F2003 Name This function is callable as FN_VPrint_OpenMP when using the Fortran 2003 interface
module.

N_VPrintFile_OpenMP

Prototype void N_VPrintFile_ OpenMP(N_Vector v, FILE *outfile)
Description This function prints the content of an OpenMP vector to outfile.

F2003 Name This function is callable as FN_VPrintFile_OpenMP when using the Fortran 2003 interface
module.

By default all fused and vector array operations are disabled in the NVECTOR_OPENMP module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N_VNew_OpenMP, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N_VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N_VNew_OpenMP
will have the default settings for the NVECTOR_OPENMP module.

’ N_VEnableFusedOps_OpenMP ‘

Prototype int N_VEnableFusedOps_OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableFusedOps_OpenMP when using the Fortran 2003
interface module.

N_VEnableLinearCombination_OpenMP ‘

Prototype int N_VEnableLinearCombination OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearCombination_OpenMP when using the For-
tran 2003 interface module.

N_VEnableScaleAddMulti OpenMP |

Prototype int N_VEnableScaleAddMulti_OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the OpenMP vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleAddMulti_OpenMP when using the Fortran
2003 interface module.

150 Description of the NVECTOR module

N_VEnableDotProdMulti_OpenMP ‘

Prototype int N_VEnableDotProdMulti_OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableDotProdMulti_OpenMP when using the Fortran
2003 interface module.

N_VEnableLinearSumVectorArray_OpenMP ‘

Prototype int N_VEnableLinearSumVectorArray OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearSumVectorArray OpenMP when using the
Fortran 2003 interface module.

N_VEnableScaleVectorArray_OpenMP \

Prototype int N_VEnableScaleVectorArray OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleVectorArray_OpenMP when using the For-
tran 2003 interface module.

N_VEnableConstVectorArray_OpenMP ‘

Prototype int N_VEnableConstVectorArray OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the OpenMP vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableConstVectorArray_OpenMP when using the For-
tran 2003 interface module.

N_VEnableWrmsNormVectorArray_OpenMP ‘

Prototype int N_VEnableWrmsNormVectorArray_OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableWrmsNormVectorArray OpenMP when using the
Fortran 2003 interface module.

N_VEnableWrmsNormMaskVectorArray_OpenMP ‘

Prototype int N_VEnableWrmsNormMaskVectorArray OpenMP (N _Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the OpenMP vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

7.5 The NVECTOR_OPENMP implementation 151

F2003 Name This function is callable as FN_VEnableWrmsNormMaskVectorArray OpenMP when using
the Fortran 2003 interface module.

N_VEnableScaleAddMultiVectorArray_OpenMP ‘

Prototype int N_VEnableScaleAddMultiVectorArray_OpenMP(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the OpenMP vector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.

N_VEnableLinearCombinationVectorArray_OpenMP ‘

Prototype int N_VEnableLinearCombinationVectorArray_OpenMP(N_Vector v,
booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the OpenMP vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

e When looping over the components of an N_Vector v, it is more efficient to first obtain the
component array via v_data = NV_DATA OMP(v) and then access v_datal[i] within the loop
than it is to use NV_Ith_OMP(v,i) within the loop.

e N _VNewEmpty_OpenMP, N_VMake OpenMP, and N_VCloneVectorArrayEmpty_OpenMP set the field
own_data = SUNFALSE. N_VDestroy_OpenMP and N_VDestroyVectorArray OpenMP will not at-
tempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such a case,
it is the user’s responsibility to deallocate the data pointer.

e To maximize efficiency, vector operations in the NVECTOR_OPENMP implementation that have
more than one N_Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

7.5.3 NVECTOR_OPENMP Fortran interfaces

The NVECTOR_OPENMP module provides a FORTRAN 2003 module as well as FORTRAN 77 style inter-
face functions for use from FORTRAN applications.

FORTRAN 2003 interface module

The nvector_openmp mod FORTRAN module defines interfaces to most NVECTOR_OPENMP C functions
using the intrinsic iso_c_binding module which provides a standardized mechanism for interoperat-
ing with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N_VNew_OpenMP is
interfaced as FN_VNew_OpenMP.

The FORTRAN 2003 NVECTOR_OPENMP interface module can be accessed with the use statement,
i.e. use fnvector_openmp mod, and linking to the library libsundials_fnvectoropenmp mod.lib in
addition to the C library. For details on where the library and module file fnvector_openmp_mod.mod
are installed see Appendix A.

152 Description of the NVECTOR module

FORTRAN 77 interface functions

For solvers that include a FORTRAN 77 interface module, the NVECTOR_OPENMP module also includes
a FORTRAN-callable function FNVINITOMP (code, NEQR, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for CVODE, 2 for DA, 3 for KINSOL, 4 for ARKODE); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and IER is an error return flag equal 0 for success and -1 for failure.

7.6 The NVECTOR_PTHREADS implementation

In situations where a user has a multi-core processing unit capable of running multiple parallel threads
with shared memory, SUNDIALS provides an implementation of NVECTOR using OpenMP, called NVEC-
TOR_OPENMP, and an implementation using Pthreads, called NVECTOR_PTHREADS. Testing has shown
that vectors should be of length at least 100,000 before the overhead associated with creating and
using the threads is made up by the parallelism in the vector calculations.

The Pthreads NVECTOR implementation provided with SUNDIALS, denoted NVECTOR_PTHREADS,
defines the content field of N_-Vector to be a structure containing the length of the vector, a pointer
to the beginning of a contiguous data array, a boolean flag own_data which specifies the ownership
of data, and the number of threads. Operations on the vector are threaded using POSIX threads
(Pthreads).

struct _N_VectorContent_Pthreads {
sunindextype length;
booleantype own_data;
realtype *data;
int num_threads;

};

The header file to include when using this module is nvector_pthreads.h. The installed module
library to link to is libsundials nvecpthreads. l2b where . 12b is typically .so for shared libraries
and .a for static libraries.

7.6.1 NVECTOR_PTHREADS accessor macros

The following macros are provided to access the content of an NVECTOR_PTHREADS vector. The suffix
_PT in the names denotes the Pthreads version.
e NV_CONTENT_PT
This routine gives access to the contents of the Pthreads vector N_Vector.

The assignment v_cont = NV_CONTENT_PT(v) sets v_cont to be a pointer to the Pthreads
N_Vector content structure.

Implementation:

#define NV_CONTENT_PT(v) ((N_VectorContent_Pthreads) (v->content))

e NV_OWN DATA_PT, NV_DATA_PT, NV_LENGTH_PT, NV_NUM_THREADS_PT
These macros give individual access to the parts of the content of a Pthreads N_Vector.

The assignment v_data = NV_DATA PT(v) sets v_data to be a pointer to the first component
of the data for the N_Vector v. The assignment NV_DATA PT(v) = v_data sets the component
array of v to be v_data by storing the pointer v_data.

The assignment v_1len = NV_LENGTH_PT(v) sets v_len to be the length of v. On the other hand,
the call NV_.LENGTH PT(v) = len._v sets the length of v to be len_v.

The assignment v_num_threads = NV_NUM_THREADS PT(v) sets v_num_threads to be the number
of threads from v. On the other hand, the call NV_.NUM_THREADS PT(v) = num_threads_v sets
the number of threads for v to be num_threads_v.

7.6 The NVECTOR_PTHREADS implementation 153

Implementation:

#define NV_OWN_DATA_PT(v) (NV_CONTENT_PT(v)->own_data)
#define NV_DATA_PT(v) (NV_CONTENT_PT(v)->data)

#define NV_LENGTH_PT(v) (NV_CONTENT_PT(v)->length)

#define NV_NUM_THREADS_PT(v) (NV_CONTENT_PT(v)->num_threads)

e NV_Ith PT
This macro gives access to the individual components of the data array of an N_Vector.

The assignment r = NV_Ith PT(v,i) sets r to be the value of the i-th component of v. The
assignment NV_Ith PT(v,i) = r sets the value of the i-th component of v to be r.

Here i ranges from 0 to n — 1 for a vector of length n.
Implementation:

#define NV_Ith_PT(v,i) (NV_DATA_PT(v)[i])

7.6.2 NVECTOR_PTHREADS functions

The NVECTOR_PTHREADS module defines Pthreads implementations of all vector operations listed in
Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4. Their names are obtained from those in these tables by appending
the suffix Pthreads (e.g. N_VDestroy_Pthreads). All the standard vector operations listed in 7.1.1
are callable via the FORTRAN 2003 interface by prepending an ‘F’ (e.g. FN_VDestroy_Pthreads). The
module NVECTOR_PTHREADS provides the following additional user-callable routines:

|N_VNew Pthreads |

Prototype N_Vector N_VNew Pthreads(sunindextype vec_length, int num_threads)

Description This function creates and allocates memory for a Pthreads N_Vector. Arguments are
the vector length and number of threads.

F2003 Name This function is callable as FN_VNew_Pthreads when using the Fortran 2003 interface
module.

N_VNewEmpty_Pthreads

Prototype N_Vector N_VNewEmpty_Pthreads(sunindextype vec_length, int num_threads)
Description This function creates a new Pthreads N_Vector with an empty (NULL) data array.

F2003 Name This function is callable as FN_VNewEmpty_Pthreads when using the Fortran 2003 inter-
face module.

N_VMake Pthreads |

Prototype N_Vector N_VMake Pthreads(sunindextype vec_length, realtype *v_data,
int num_threads);

Description This function creates and allocates memory for a Pthreads vector with user-provided
data array. This function does not allocate memory for v_data itself.

F2003 Name This function is callable as FN_VMake Pthreads when using the Fortran 2003 interface
module.

154 Description of the NVECTOR module

N_VCloneVectorArray Pthreads ‘

Prototype N_Vector *N_VCloneVectorArray Pthreads(int count, N_Vector w)
Description This function creates (by cloning) an array of count Pthreads vectors.

F2003 Name This function is callable as FN_VCloneVectorArray Pthreads when using the Fortran
2003 interface module.

N_VCloneVectorArrayEmpty Pthreads ‘

Prototype N_Vector *N_VCloneVectorArrayEmpty Pthreads(int count, N_Vector w)

Description This function creates (by cloning) an array of count Pthreads vectors, each with an
empty (NULL) data array.

F2003 Name This function is callable as FN_VCloneVectorArrayEmpty Pthreads when using the For-
tran 2003 interface module.

N_VDestroyVectorArray Pthreads

Prototype void N_VDestroyVectorArray Pthreads(N_Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N_Vector
created with N_VCloneVectorArray Pthreads or with
N_VCloneVectorArrayEmpty_Pthreads.

F2003 Name This function is callable as FN_VDestroyVectorArray Pthreads when using the Fortran
2003 interface module.

N_VPrint_Pthreads]
Prototype void N_VPrint Pthreads(N_Vector v)

Description This function prints the content of a Pthreads vector to stdout.

F2003 Name This function is callable as FN_VPrint_Pthreads when using the Fortran 2003 interface
module.

N_VPrintFile Pthreads
Prototype = void N_VPrintFile Pthreads(N_Vector v, FILE *outfile)

Description This function prints the content of a Pthreads vector to outfile.

F2003 Name This function is callable as FN_VPrintFile Pthreads when using the Fortran 2003 in-
terface module.

By default all fused and vector array operations are disabled in the NVECTOR_PTHREADS module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N_-VNew_Pthreads, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N_VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N_VNew_Pthreads
will have the default settings for the NVECTOR_PTHREADS module.

’ N_VEnableFusedOps_Pthreads ‘

Prototype int N_VEnableFusedOps_Pthreads(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array op-
erations in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

7.6 The NVECTOR_PTHREADS implementation 155

F2003 Name This function is callable as FN_VEnableFusedOps_Pthreads when using the Fortran 2003
interface module.

N_VEnableLinearCombination_Pthreads ‘

Prototype int N_VEnableLinearCombination Pthreads(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearCombination Pthreads when using the
Fortran 2003 interface module.

N_VEnableScaleAddMulti Pthreads ‘
Prototype int N_VEnableScaleAddMulti_Pthreads(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the Pthreads vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleAddMulti _Pthreads when using the For-
tran 2003 interface module.

N_VEnableDotProdMulti_Pthreads ‘

Prototype int N_VEnableDotProdMulti Pthreads(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableDotProdMulti Pthreads when using the Fortran
2003 interface module.

N_VEnableLinearSumVectorArray Pthreads ‘

Prototype int N_VEnableLinearSumVectorArray Pthreads(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableLinearSumVectorArray Pthreads when using
the Fortran 2003 interface module.

N_VEnableScaleVectorArray Pthreads ‘

Prototype int N_VEnableScaleVectorArray Pthreads(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the Pthreads vector. The return value is O for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableScaleVectorArray Pthreads when using the
Fortran 2003 interface module.

A

156 Description of the NVECTOR module

N_VEnableConstVectorArray Pthreads ‘

Prototype int N_VEnableConstVectorArray Pthreads(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the Pthreads vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableConstVectorArray Pthreads when using the
Fortran 2003 interface module.

N_VEnableWrmsNormVectorArray_Pthreads ‘

Prototype int N_VEnableWrmsNormVectorArray Pthreads(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableWrmsNormVectorArray_Pthreads when using the
Fortran 2003 interface module.

N_VEnableWrmsNormMaskVectorArray Pthreads ‘

Prototype int N_VEnableWrmsNormMaskVectorArray Pthreads(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the Pthreads vector. The return value is 0 for success and
-1 if the input vector or its ops structure are NULL.

F2003 Name This function is callable as FN_VEnableWrmsNormMaskVectorArray Pthreads when us-
ing the Fortran 2003 interface module.

N_VEnableScaleAddMultiVectorArray_Pthreads ‘

Prototype = int N_VEnableScaleAddMultiVectorArray Pthreads(N_Vector v,
booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the Pthreads vector. The return value is 0 for
success and -1 if the input vector or its ops structure are NULL.

N_VEnableLinearCombinationVectorArray Pthreads ‘

Prototype int N_VEnableLinearCombinationVectorArray Pthreads(N_Vector v,
booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the Pthreads vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

e When looping over the components of an N_Vector v, it is more efficient to first obtain the
component array via v.data = NV_DATA_PT(v) and then access v_data[i] within the loop than
it is to use NV_Ith PT(v,i) within the loop.

o N_VNewEmpty_ Pthreads, N_.VMake Pthreads, and N_VCloneVectorArrayEmpty Pthreads set the
field own_data = SUNFALSE. N_VDestroy Pthreads and N_VDestroyVectorArray Pthreads will
not attempt to free the pointer data for any N_Vector with own_data set to SUNFALSE. In such
a case, it is the user’s responsibility to deallocate the data pointer.

7.7 The NVECTOR_PARHYP implementation 157

A e To maximize efficiency, vector operations in the NVECTOR_PTHREADS implementation that have
more than one N_Vector argument do not check for consistent internal representation of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

7.6.3 NVECTOR_PTHREADS Fortran interfaces

The NVECTOR_PTHREADS module provides a FORTRAN 2003 module as well as FORTRAN 77 style
interface functions for use from FORTRAN applications.

FORTRAN 2003 interface module

The nvector_pthreads_mod FORTRAN module defines interfaces to most NVECTOR_PTHREADS C func-
tions using the intrinsic iso_c_binding module which provides a standardized mechanism for interop-
erating with C. As noted in the C function descriptions above, the interface functions are named after
the corresponding C function, but with a leading ‘F’. For example, the function N_VNew Pthreads is
interfaced as FN_VNew_Pthreads.

The FORTRAN 2003 NVECTOR_PTHREADS interface module can be accessed with the use statement,
i.e. use fnvector_pthreads mod, and linking to the library 1ibsundials_fnvectorpthreads_mod.lib
in addition to the C library. For details on where the library and module file fnvector_pthreads_mod.mod
are installed see Appendix A.

FORTRAN 77 interface functions

For solvers that include a FORTRAN interface module, the NVECTOR_PTHREADS module also includes
a FORTRAN-callable function FNVINITPTS (code, NEQ, NUMTHREADS, IER), to initialize this module.
Here code is an input solver id (1 for CVODE, 2 for IDA, 3 for KINSOL, 4 for ARKODE); NEQ is the
problem size (declared so as to match C type long int); NUMTHREADS is the number of threads;
and IER is an error return flag equal 0 for success and -1 for failure.

7.7 The NVECTOR_PARHYP implementation

The NVECTOR_PARHYP implementation of the NVECTOR module provided with SUNDIALS is a wrapper
around hypre’s ParVector class. Most of the vector kernels simply call hypre vector operations. The
implementation defines the content field of N_Vector to be a structure containing the global and local
lengths of the vector, a pointer to an object of type HYPRE ParVector, an MPI communicator, and a
boolean flag own_parvector indicating ownership of the hypre parallel vector object .

struct _N_VectorContent_ParHyp {
sunindextype local_length;
sunindextype global_length;
booleantype own_parvector;
MPI_Comm comm;
HYPRE_ParVector x;

};

The header file to include when using this module is nvector_parhyp.h. The installed module library
to link to is libsundials_nvecparhyp.l4b where . 14b is typically .so for shared libraries and .a
for static libraries.

Unlike native SUNDIALS vector types, NVECTOR_PARHYP does not provide macros to access its
member variables. Note that NVECTOR_PARHYP requires SUNDIALS to be built with MPI support.

158 Description of the NVECTOR module

7.7.1 NVECTOR_PARHYP functions

The NVECTOR_PARHYP module defines implementations of all vector operations listed in Tables 7.1.1,
7.1.2, 7.1.3, and 7.1.4, except for N_VSetArrayPointer and N_VGetArrayPointer, because access-
ing raw vector data is handled by low-level hypre functions. As such, this vector is not available
for use with SUNDIALS Fortran interfaces. When access to raw vector data is needed, one should
extract the hypre vector first, and then use hypre methods to access the data. Usage examples of
NVECTOR_PARHYP are provided in the cvAdvDiff non ph.c example program for CVODE [35] and the
ark_diurnal kry_ph.c example program for ARKODE [42].

The names of parhyp methods are obtained from those in Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4 by
appending the suffix _ParHyp (e.g. N_-VDestroy ParHyp). The module NVECTOR_PARHYP provides the
following additional user-callable routines:

N_VNewEmpty_ParHyp ‘

Prototype N_Vector N_VNewEmpty ParHyp(MPI_Comm comm, sunindextype local_length,
sunindextype global _length)

Description This function creates a new parhyp N_Vector with the pointer to the hypre vector set
to NULL.

N_VMake_ParHyp

Prototype = N_Vector N_VMake_ParHyp(HYPRE ParVector x)

Description This function creates an N_Vector wrapper around an existing hypre parallel vector. It
does not allocate memory for x itself.

N_VGetVector_ParHyp

Prototype @ HYPRE_ParVector N_VGetVector_ ParHyp(N_Vector v)

Description This function returns the underlying hypre vector.

N_VCloneVectorArray ParHyp ‘

Prototype N_Vector #N_VCloneVectorArray ParHyp(int count, N_Vector w)

Description This function creates (by cloning) an array of count parallel vectors.

N_VCloneVectorArrayEmpty_ParHyp ‘

Prototype = N_Vector #N_VCloneVectorArrayEmpty ParHyp(int count, N_Vector w)

Description This function creates (by cloning) an array of count parallel vectors, each with an empty
(NULL) data array.

N_VDestroyVectorArray_ParHyp ‘

Prototype void N_VDestroyVectorArray ParHyp(N_Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N_Vector
created with N_-VCloneVectorArray ParHyp or with N_-VCloneVectorArrayEmpty_ParHyp.

N_VPrint_ParHyp

Prototype = void N_VPrint ParHyp(N_Vector v)

Description This function prints the local content of a parhyp vector to stdout.

7.7 The NVECTOR_PARHYP implementation 159

N_VPrintFile_ParHyp

Prototype void N_VPrintFile_ParHyp(N_Vector v, FILE *outfile)
Description This function prints the local content of a parhyp vector to outfile.

By default all fused and vector array operations are disabled in the NVECTOR_PARHYP module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N_VMake ParHyp, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N_VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N_VMake ParHyp
will have the default settings for the NVECTOR_PARHYP module.

’ N_VEnableFusedOps_ParHyp ‘

Prototype int N_VEnableFusedOps_ParHyp(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the parhyp vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableLinearCombination_ParHyp ‘

Prototype int N_VEnableLinearCombination ParHyp(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableScaleAddMulti_ParHyp ‘

Prototype int N_VEnableScaleAddMulti_ParHyp(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the parhyp vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N_VEnableDotProdMulti_ParHyp ‘

Prototype int N_VEnableDotProdMulti_ParHyp(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableLinearSumVectorArray_ParHyp ‘

Prototype int N_VEnableLinearSumVectorArray ParHyp(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableScaleVectorArray_ParHyp

Prototype int N_VEnableScaleVectorArray ParHyp(N_Vector v, booleantype tf)

A

160 Description of the NVECTOR module

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the parhyp vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableConstVectorArray ParHyp ‘

Prototype int N_VEnableConstVectorArray ParHyp(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the parhyp vector. The return value is O for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableWrmsNormVectorArray ParHyp ‘

Prototype int N_VEnableWrmsNormVectorArray ParHyp(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the parhyp vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableWrmsNormMaskVectorArray_ParHyp ‘

Prototype int N_VEnableWrmsNormMaskVectorArray ParHyp(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the parhyp vector. The return value is 0 for success and -1
if the input vector or its ops structure are NULL.

N_VEnableScaleAddMultiVectorArray_ParHyp ‘

Prototype int N_VEnableScaleAddMultiVectorArray ParHyp(N_Vector v,
booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the parhyp vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N_VEnableLinearCombinationVectorArray ParHyp ‘

Prototype int N_VEnableLinearCombinationVectorArray ParHyp(N_Vector v,
booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the parhyp vector. The return value is 0 for success and -1 if the
input vector or its ops structure are NULL.

Notes

e When there is a need to access components of an N_Vector_ParHyp, v, it is recommended to
extract the hypre vector via x_vec = N_VGetVector ParHyp(v) and then access components
using appropriate hypre functions.

o N_VNewEmpty_ ParHyp, N_VMake ParHyp, and N_VCloneVectorArrayEmpty ParHyp set the field
own_parvector to SUNFALSE. N_VDestroy_ParHyp and N_VDestroyVectorArray ParHyp will not
attempt to delete an underlying hypre vector for any N_Vector with own_parvector set to
SUNFALSE. In such a case, it is the user’s responsibility to delete the underlying vector.

A

7.8 The NVECTOR_PETSC implementation 161

e To maximize efficiency, vector operations in the NVECTOR_PARHYP implementation that have
more than one N_Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

7.8 The NVECTOR_PETSC implementation

The NVECTOR_PETSC module is an NVECTOR wrapper around the PETSc vector. It defines the content
field of a N_Vector to be a structure containing the global and local lengths of the vector, a pointer
to the PETSc vector, an MPI communicator, and a boolean flag own_data indicating ownership of the
wrapped PETSc vector.

struct _N_VectorContent_Petsc {

sunindextype local_length;

sunindextype global_length;

booleantype own_data;

Vec *pvec;

MPI_Comm comm;
3
The header file to include when using this module is nvector_petsc.h. The installed module library
to link to is libsundials nvecpetsc. lib where . 1%b is typically .so for shared libraries and .a for
static libraries.

Unlike native SUNDIALS vector types, NVECTOR_PETSC does not provide macros to access its mem-

ber variables. Note that NVECTOR_PETSC requires SUNDIALS to be built with MPI support.

7.8.1 NVECTOR_PETSC functions

The NVECTOR_PETSC module defines implementations of all vector operations listed in Tables 7.1.1,
7.1.2,7.1.3, and 7.1.4, except for N_-VGetArrayPointer and N_VSetArrayPointer. As such, this vector
cannot be used with SUNDIALS Fortran interfaces. When access to raw vector data is needed, it is
recommended to extract the PETSc vector first, and then use PETSc methods to access the data. Usage
examples of NVECTOR_PETSC are provided in example programs for IDA [34].

The names of vector operations are obtained from those in Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4
by appending the suffix Petsc (e.g. N_VDestroy Petsc). The module NVECTOR_PETSC provides the
following additional user-callable routines:

N_VNewEmpty_Petsc

Prototype N_Vector N_VNewEmpty Petsc(MPI_Comm comm, sunindextype local_length,
sunindextype global_length)

Description This function creates a new NVECTOR wrapper with the pointer to the wrapped PETSc
vector set to (NULL). It is used by the N_VMake Petsc and N_VClone Petsc implementa-
tions.

N_VMake_Petsc |
Prototype N_Vector N_VMake Petsc(Vec *pvec)

Description This function creates and allocates memory for an NVECTOR_PETSC wrapper around a
user-provided PETSc vector. It does not allocate memory for the vector pvec itself.

N_VGetVector_Petsc ‘
Prototype Vec #*N_VGetVector_Petsc(N_Vector v)

Description This function returns a pointer to the underlying PETSc vector.

162 Description of the NVECTOR module

N_VCloneVectorArray Petsc ‘

Prototype N_Vector *N_VCloneVectorArray Petsc(int count, N_Vector w)

Description This function creates (by cloning) an array of count NVECTOR_PETSC vectors.

N_VCloneVectorArrayEmpty_Petsc ‘

Prototype N_Vector *N_VCloneVectorArrayEmpty Petsc(int count, N_Vector w)

Description This function creates (by cloning) an array of count NVECTOR_PETSC vectors, each with
pointers to PETSc vectors set to (NULL).

N_VDestroyVectorArray Petsc ‘

Prototype void N_VDestroyVectorArray Petsc(N_Vector *vs, int count)

Description This function frees memory allocated for the array of count variables of type N_Vector
created with N_-VCloneVectorArray Petsc or with N_-VCloneVectorArrayEmpty_Petsc.

N_VPrint_Petsc ‘

Prototype void N_VPrint Petsc(N_Vector v)

Description This function prints the global content of a wrapped PETSc vector to stdout.

N_VPrintFile Petsc|

Prototype void N_VPrintFile Petsc(N_Vector v, const char fnamel[])

Description This function prints the global content of a wrapped PETSc vector to fname.

By default all fused and vector array operations are disabled in the NVECTOR_PETSC module.
The following additional user-callable routines are provided to enable or disable fused and vector
array operations for a specific vector. To ensure consistency across vectors it is recommended to first
create a vector with N_VMake Petsc, enable/disable the desired operations for that vector with the
functions below, and create any additional vectors from that vector using N_VClone. This guarantees
the new vectors will have the same operations enabled/disabled as cloned vectors inherit the same
enable/disable options as the vector they are cloned from while vectors created with N_VMake Petsc
will have the default settings for the NVECTOR_PETSC module.

’ N_VEnableFusedOps_Petsc ‘

Prototype int N_VEnableFusedOps_Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) all fused and vector array oper-
ations in the PETSc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableLinearCombination_Petsc ‘

Prototype int N_VEnableLinearCombination Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination fused
operation in the PETSc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

7.8 The NVECTOR_PETSC implementation 163

N_VEnableScaleAddMulti Petsc|

Prototype int N_VEnableScaleAddMulti_Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector to
multiple vectors fused operation in the PETSc vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N_VEnableDotProdMulti Petsc |
Prototype int N_VEnableDotProdMulti_Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the multiple dot products fused
operation in the PETSc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableLinearSumVectorArray Petsc ‘

Prototype int N_VEnableLinearSumVectorArray Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear sum operation for
vector arrays in the PETSc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableScaleVectorArray_Petsc ‘

Prototype int N_VEnableScaleVectorArray Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale operation for vector
arrays in the PETSc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableConstVectorArray_Petsc ‘

Prototype = int N_VEnableConstVectorArray Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the const operation for vector
arrays in the PETSc vector. The return value is 0 for success and -1 if the input vector
or its ops structure are NULL.

N_VEnableWrmsNormVectorArray_Petsc ‘

Prototype int N_VEnableWrmsNormVectorArray Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the WRMS norm operation for
vector arrays in the PETSc vector. The return value is 0 for success and -1 if the input
vector or its ops structure are NULL.

N_VEnableWrmsNormMaskVectorArray_Petsc ‘

Prototype int N_VEnableWrmsNormMaskVectorArray Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the masked WRMS norm op-
eration for vector arrays in the PETSc vector. The return value is 0 for success and -1
if the input vector or its ops structure are NULL.

164 Description of the NVECTOR module

N_VEnableScaleAddMultiVectorArray Petsc ‘

Prototype int N_VEnableScaleAddMultiVectorArray Petsc(N_Vector v, booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the scale and add a vector array
to multiple vector arrays operation in the PETSc vector. The return value is 0 for success
and -1 if the input vector or its ops structure are NULL.

N_VEnableLinearCombinationVectorArray Petsc ‘

Prototype int N_VEnableLinearCombinationVectorArray Petsc(N_Vector v,
booleantype tf)

Description This function enables (SUNTRUE) or disables (SUNFALSE) the linear combination operation
for vector arrays in the PETSc vector. The return value is O for success and -1 if the
input vector or its ops structure are NULL.

Notes

e When there is a need to access components of an N_Vector Petsc, v, it is recommeded to
extract the PETSc vector via x_vec = N_VGetVector Petsc(v) and then access components
using appropriate PETSc functions.

e The functions N_VNewEmpty_Petsc, N_VMake Petsc, and N_VCloneVectorArrayEmpty Petsc set
the field own_data to SUNFALSE. N_VDestroy_Petsc and N_VDestroyVectorArray Petsc will not
attempt to free the pointer puvec for any N_Vector with own_data set to SUNFALSE. In such a
case, it is the user’s responsibility to deallocate the pvec pointer.

e To maximize efficiency, vector operations in the NVECTOR_PETSC implementation that have
more than one N_Vector argument do not check for consistent internal representations of these
vectors. It is the user’s responsibility to ensure that such routines are called with N_Vector
arguments that were all created with the same internal representations.

7.9 The NVECTOR_CUDA implementation

The NVECTOR_CUDA module is an NVECTOR implementation in the CcUDA language. The module
allows for SUNDIALS vector kernels to run on NVIDIA GPU devices. It is intended for users who are
already familiar with cUDA and GPU programming. Building this vector module requires a CUDA
compiler and, by extension, a C4++ compiler. The vector content layout is as follows:

struct _N_VectorContent_Cuda

{
sunindextype length;
booleantype own_exec;
booleantype own_helper;
SUNMemory host_data;
SUNMemory device_data;

SUNCudaExecPolicy* stream_exec_policy;
SUNCudaExecPolicy* reduce_exec_policy;
SUNMemoryHelper mem_helper;

void* priv; /* ’private’ data */

I
typedef struct _N_VectorContent_Cuda *N_VectorContent_Cuda;

The content members are the vector length (size), ownership flags for the *_exec_policy fields and
the mem helper field, SUNMemory objects for the vector data on the host and the device, pointers to

7.9 The NVECTOR_CUDA implementation 165

SUNCudaExecPolicy implementations that control how the CUDA kernels are launched for streaming
and reduction vector kernels, a SUNMemoryHelper object, and a private data structure which holds
additonal members that should not be accessed directly.

When instantiated with N_VNew_Cuda, the underlying data will be allocated memory on both the
host and the device. Alternatively, a user can provide host and device data arrays by using the
N_VMake_Cuda constructor. To use CUDA managed memory, the constructors N_VNewManaged Cuda
and
N_VMakeManaged_Cuda are provided. Details on each of these constructors are provided below.

To use the NVECTOR_CUDA module, the header file to include is nvector_cuda.h, and the library
to link to is libsundials nveccuda. lzb. The extension .14b is typically .so for shared libraries
and .a for static libraries.

7.9.1 NVECTOR_CUDA functions

Unlike other native SUNDIALS vector types, NVECTOR_CUDA does not provide macros to access its
member variables. Instead, user should use the accessor functions:

N_VGetHostArrayPointer_Cuda

Prototype realtype *N_VGetHostArrayPointer_Cuda(N_Vector v)

Description This function returns a pointer to the vector data on the host.

N_VGetDeviceArrayPointer_Cuda

Prototype realtype *N_VGetDeviceArrayPointer_Cuda(N_Vector v)

Description This function returns a pointer to the vector data on the device.

N_VSetHostArrayPointer_Cuda

Prototype realtype *N_VSetHostArrayPointer_Cuda(N_Vector wv)

Description This function sets the pointer to the vector data on the host. The existing pointer will
not be freed first.

N_VSetDeviceArrayPointer_Cuda

Prototype realtype *N_VSetDeviceArrayPointer_Cuda(N_Vector v)

Description This function sets pointer to the vector data on the device. The existing pointer will
not be freed first.

N_VIsManagedMemory_Cuda

Prototype booleantype *N_VIsManagedMemory_Cuda(N_Vector v)

Description This function returns a boolean flag indicating if the vector data is allocated in managed
memory or not.

The NVECTOR_CUDA module defines implementations of all vector operations listed in Tables 7.1.1,
7.1.2, 7.1.3 and 7.1.4, except for N_VSetArrayPointer and N_VGetArrayPointer unless managed
memory is used. As such, this vector can only be used with the SUNDIALS Fortran interfaces, and
the SUNDIALS direct solvers and preconditioners when using managed memory. The NVECTOR_CUDA
module provides separate functions to access data on the host and on the device for the unmanaged
memory use case. It also provides methods for copying from the host to the device and vice versa.
Usage examples of NVECTOR_CUDA are provided in some example programs for CVODE [35].

The names of vector operations are obtained from those in Tables 7.1.1, 7.1.2, 7.1.3, and 7.1.4
by appending the suffix _Cuda (e.g. N_VDestroy_Cuda). The module NVECTOR_CUDA provides the
following functions:

166 Description of the NVECTOR module

N_VNew_Cuda

Prototype = N_Vector N_VNew_Cuda(sunindextype length)

Description This function creates and allocates memory for a CUDA N_Vector. The vector data array
is allocated on both the host and device.

N_VNewManaged_Cuda

Prototype = N_Vector N_VNewManaged Cuda(sunindextype length)

Description This function creates and allocates memory for a CUDA N_Vector. The vector data array
is allocated in managed memory.

N_VNewWithMemHelp_Cuda

Prototype N_Vector N_VNewWithMemHelp_Cuda(sunindextype length, booleantype use_managed mem,
SUNMemoryHelper helper);

Description This function creates an NVECTOR_CUDA which will use the SUNMemoryHelper object
to allocate memory. If use managed memory is 0, then unmanaged memory is used,
otherwise managed memory is used.

N_VNewEmpty_Cuda

Prototype N_Vector N_VNewEmpty_Cuda()

Description This function creates a new NVECTOR wrapper with the pointer to the wrapped cuba
vector set to NULL. It is used by the N_VNew_Cuda, N_VMake_Cuda, and N_VClone_Cuda
implementations.

N_VMake_Cuda

Prototype N_Vector N_VMake Cuda(sunindextype length, realtype *h_data, realtype *dev_data)

Description This function creates an NVECTOR_CUDA with user-supplied vector data arrays h_vdata
and d_vdata. This function does not allocate memory for data itself.

N_VMakeManaged_Cuda

Prototype N_Vector N_VMakeManaged Cuda(sunindextype length, realtype *vdata)

Description This function creates an NVECTOR_CUDA with a user-supplied managed memory data
array. This function does not allocate memory for data itself.

N_VMakeWithManagedAllocator_Cuda

Prototype = N_Vector N_VMakeWithManagedAllocator_Cuda(sunindextype length, void* (*allocfn) (size_t
size), void (xfreefn) (void* ptr));

Description This function creates an NVECTOR_CUDA with a user-supplied memory allocator. It
requires the user to provide a corresponding free function as well. The memory allocated
by the allocator function must behave like CUDA managed memory.

This function is deprecated and will be removed in the next major release. Use N_VNewWithMemHelp_Cuda
instead.

The module NVECTOR_CUDA also